
Matrix Multiplication: AB

A %*% B # Matrix multiplication

Transpose of B: B'

t(B)

Matrix Product: B'A'

t(B) %*% t(A)

Scalar multiplication

5 * B

B * 5

Extract diagonal elements of a square matrix

diag(C) # C is a square matrix

Trace of a square matrix

sum(diag(C))

Determinant of a square matrix

det(C)

Create a 5x5 identity matrix

I <- diag(5)

Inverse of a square matrix

solve(C)

Singular value decomposition (SVD)

svd(A)

Eigendecomposition (of a symmetric matrix)

eigen(C %*% t(C))

Matrix Algebra in R Cheatsheet
Update: Jan 2021

 Useful Matrix Operations Reference: Basic
Creating Rectangular Matrices (random data)

Matrix "Gotchas": Common Problems

Element-wise multiplication
A * B
Matrix multiplication
A %*% B
Outer product. AB'
A %o% B
Dot Product of Vectors
dot(a, b)
A'B and A'A respectively
crossprod(A,B)
crossprod(A)
Transpose (Vector or Matrix)
t(A)
Create diagonal matrix
diag(x) # x is a vector
Return principal diagonal
diag(A) # A is a vector
Create kxk identity matrix
diag(k) # k is the dimension
Solve for x when: x b = Ax
solve(A, b)
Inverse of A
solve(A)
Combine matrices (horiz)
cbind(A,B,...)
Combine matrices (vert)
rbind(A,B,...)
Create vector of row means
rowMeans(A)
Create vector of row sums
rowSums(A)
Create vector of col means
colMeans(A)
Create vector of col sums
colSums(A)
Test if object is a matrix
is.matrix(A)
Change type to Matrix
as.matrix(A)

Examining (Inspecting) Matrices

 Functions for Basic Calculations

Element-wise multiplication vs. matrix multiplication

A * B # Element-by-element multiplication

A %*% B # Matrix multiplication

Avoid `==` when testing equality in floating point objects

isTRUE(all.equal(X, Y)) # Handles nearly-equal numbers

identical(X, Y) # Safe, reliable way to test two f.p. objects

Columns or rows extracted from matrices are simple vectors

You must 'convert" them to matrices for them to behave!

A <- matrix(c(1,2,3,4,5,6,7,8,9), nrow=3) # Make a 3x3 matrix

a <- A[1,] # contents of row 1

b <- A[,2] # contents of column 2

a1 <- matrix(a, nrow=1) # a with correct orientation

b1 <- matrix(b) # b with correct orientation

Generate a rectangular matrix with 10 rows, 3 columns

set.seed(222) # Always set a random seed (for repeatability)

A <- matrix(runif(30), nrow=10, ncol=3)

Generate a rectangular matrix with 3 rows, 5 columns

B <- matrix(runif(15), nrow=3, ncol=5)

Generate a rectangular matrix with 4 rows, 4 columns

C <- matrix(runif(16), nrow=4, ncol=4)

Is A a matrix?

is.matrix(A)

Dimensions of matrix A

dim(A)

Number of rows or columns of A

nrow(A)

ncol(A)

Assign row and column names to A

rownames(A) <- 1:10

colnames(A) <- c("a1", "a2", "a3")

Find the class of object 'A'

class(a) # Should be 'Matrix'

Find the type of 'A'

typeof(A)

Show the first few rows of 'A'

head(A) # VERY useful!

Show the last few rows of 'A'

tail(A)

Summarize 'A'

summary(A)

Show row '2' of 'A' (only)

A[2,]

Show columns 2 & 3 of 'A' (only)

A[,2:3]

Sum of elements by rows

rowSums(A)

Sum of elements by columns

colSums(A)

Mean of elements by rows

rowMeans(A)

Mean of elements by columns

colMeans(A)

Handy Functions
Center matrix A

scale(A, scale=FALSE) # Centering, no scaling

Standardize A: variables with mean=0, var=1

scale(A) # Centering and scaling are defaults

Elements as fraction of the total sum

prop.table(A)

Elements as fraction of rows margin

prop.table(A, 1)

Elements as fraction of columns margin

prop.table(A, 2)

NOTE: See ?scale
specific details!

Naming rows of A, a 3x3 matrix

row.names(A) <- c("R1", "R2", "R3")

Naming columns of A

colnames(A) <- c("C1", "C2", "C3")

Given a set of vectors a, b, c

Treating a, b, c as column vectors

> a <- c(1,2,3); b <- c(4,5,6); c <- c(7,8,9)

> as.matrix(cbind(a,b,c)

 a b c

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

Treating a, b, c as column vectors

> as.matrix(rbind(a,b,c))

 [,1] [,2] [,3]

a 1 2 3

b 4 5 6

c 7 8 9

Create Matrices from Vectors... ...or from one Vector

Compute a matrix norm of x using LAPACK. The norm can be the one ("O")

norm, the infinity ("I") norm, the Frobenius ("F") norm, the maximum

modulus ("M") among elements of a matrix, or the “spectral” or "2"-norm,

as determined by the value of type.

norm(x, type = "F")

Compute a vector norm explicitly

sqrt(sum(x^2))

Compute vector norm using LAPACK.

See also "Compute the Norm of a Matrix"

norm(x, type = "2")

From ?data.matrix: "Return the matrix obtained by converting all the

variables in a data # frame to numeric mode and then binding them

together as the columns of a matrix. Factors and ordered factors are

replaced by their internal codes. NOTE: Use the usual techniques to

select a subset of `myDataFrame` if required

data.matrix(myDataFrame)

Reference: Advanced
Examples of Applying Functions

Create a Matrix from a CSV (known to be numeric)
Common method: First creates a dataframe using read.csv()

No row or column names imported

m1 <- as.matrix(read.csv("file.csv", sep=",", header = FALSE))

Row names in column 1, column names in row 1 (the header)

m2 <- as.matrix(read.csv("file.csv", sep=",", row.names=1))

NOTE: RStudio uses built-in important functions such as read_csv

from `readr` package; these produce tibbles (special dataframes)

m3 <- as.matrix(read_csv("file.csv", col_names = FALSE))

Create a Matrix from a Data Frame

Compute the norm of a Matrix

Moore-Penrose Inverse of A

y$val : the eigenvalues of A
y$vec : the eigenvectors of A

Single value decomposition of A

Cholesky factorization of A

QR decomposition of A

ginv(A)

Y <- eigen(A)

Y <- svd(A)

R <- chol(A)

y <- qr(A)

Compute the norm of a Vector

Given both dimensions

> mat = matrix(1:12,4,3)

> mat

 [,1] [,2] [,3]

[1,] 1 5 9

[2,] 2 6 10

[3,] 3 7 11

[4,] 4 8 12

Given one dimension

Same result

> mat = matrix(1:12,ncol=3)

> mat = matrix(1:12,nrow=4)

Find other RStudio Cheatsheets at
https://www.rstudio.com/resources/cheatsheets/

Sum of elements by rows

apply(A, 1, sum)

Sum of elements by columns

apply(A, 2, sum)

Standard deviation of elements by rows

apply(A, 1, sd)

Standard deviation of elements by rows

apply(A, 2, sd)

Maximum of elements by rows

apply(A, 1, max)

Minimum of elements by columns

apply(A, 2, min)

Compute a vector norm explicitly

sqrt(sum(x^2))

Compute vector norm using LAPACK.

See also "Compute the Norm of a Matrix"

norm(x, type = "2")

Compute the norm of a Vector

prcomp() comes with the default "stats" package, which
means that you don’t have to install anything.

PCA with function prcomp
pca1 = prcomp(USArrests, scale. = TRUE)

sqrt of eigenvalues
pca1$sdev

view the loadings
head(pca1$rotation)

view the principal components (aka scores)
head(pca1$x)

biplot (see upper figure, right)
biplot(pca1)

"scree" or loadings plot (see lower figure, right)
plot(pca1)

Principal Component Analysis Basics Naming rows and columns of a matrix

https://www.rstudio.com/resources/cheatsheets/

