Matrix Algebra in R Cheatsheet Update: Jan 2021

Creating Rectangular Matrices (random data)

\# Generate a rectangular matrix with 10 rows, 3 columns
set.seed(222) \# Always set a random seed (for repeatability) A <- matrix(runif(30), nrow=10, ncol=3)
\# Generate a rectangular matrix with 3 rows, 5 columns
B <- matrix(runif(15), nrow=3, ncol=5)
\# Generate a rectangular matrix with 4 rows, 4 columns

C <- matrix(runif(16), nrow=4, ncol=4)

Examining (Inspecting) Matrices

\# Is A a matrix?
is.matrix(A)
\# Dimensions of matrix A

$\operatorname{dim}(A)$

\# Number of rows or columns of A
nrow(A)
ncol(A)
\# Assign row and column names to A
rownames(A) <- 1:10
colnames(A) <- c("a1", "a2", "a3")
\# Find the class of object 'A'
class(a) \# Should be 'Matrix'
\# Find the type of ' A '
typeof(A)
\# Show the first few rows of 'A'
head(A) \# VERY useful!
\# Show the last few rows of 'A'
tail(A)
\# Summarize ' A '
summary (A)
\# Show row '2' of 'A' (only)
A[2,]
\# Show columns 2 \& 3 of 'A' (only)
A[, 2:3]

Matrix "Gotchas": Common Problems

\# Element-wise multiplication vs. matrix multiplication A * B \# Element-by-element multiplication
A \%*\% B \# Matrix multiplication
\# Avoid `==` when testing equality in floating point objects istrue(all.equal($\mathrm{X}, \mathrm{Y})$) \# Handles nearly-equal numbers identical(X, Y) \# Safe, reliable way to test two f.p. objects
\# Columns or rows extracted from matrices are simple vectors \# You must 'convert" them to matrices for them to behave! A <- matrix(c($1,2,3,4,5,6,7,8,9$), nrow=3) \# Make a 3×3 matrix a <- A[1,] \# contents of row 1
b <- A[,2] \# contents of column 2
a1 <- matrix(a, nrow=1) \# a with correct orientation
b1 <- matrix(b) \# b with correct orientation

Reference: Basic

Element-wise multiplication A * B
Matrix multiplication
A \%*\% B
Outer product.
A^{\prime}
A \% O\% B
Dot Product of Vectors
dot (a, b)
A'B and A'A respectively
crossprod (A, B)
crossprod (A)
Transpose (Vector or Matrix)

t (A)

Create diagonal matrix
diag(x) \# x is a vector
Return principal diagonal
diag(A) \# A is a vector
Create kxk identity matrix diag(k) \# k is the dimension
Solve for \mathbf{x} when: $\mathbf{x} \mathbf{b}=\mathbf{A x}$ solve (A, b)

Inverse of A

solve (A)
Combine matrices (horiz) cbind (A, B, ...)
Combine matrices (vert)
rbind (A, B, ...)
Create vector of row means rowMeans (A)
Create vector of row sums rowSums (A)
Create vector of col means colMeans (A)
Create vector of col sums colSums (A)
Test if object is a matrix is.matrix (A)
Change type to Matrix
as.matrix (A)

Useful Matrix Operations

\# Matrix Multiplication: AB
A \%*\% B \# Matrix multiplication
\# Transpose of $B: B '$
$t(B)$
\# Matrix Product: B'A'
$t(B) \% * \% t(A)$
\# Scalar multiplication
5 * B
B * 5
\# Extract diagonal elements of a square matrix diag(C) \# C is a square matrix
\# Trace of a square matrix
sum(diag(C))
\# Determinant of a square matrix
$\operatorname{det}(C)$
\# Create a 5×5 identity matrix
I <- diag(5)
\# Inverse of a square matrix
solve(C)
\# Singular value decomposition (SVD)
svd(A)
\# Eigendecomposition (of a symmetric matrix)
eigen(C \%*\% t(C))

Functions for Basic Calculations

\# Sum of elements by rows
rowSums (A)
\# Sum of elements by columns
colSums (A)
\# Mean of elements by rows
rowMeans(A)
\# Mean of elements by columns
colMeans(A)

Handy Functions

\# Center matrix A
scale(A, scale=FALSE) \# Centering, no scaling \# Standardize A: variables with mean=0, var=1

NOTE: See ?scale specific details! scale(A) \# Centering and scaling are defaults \# Elements as fraction of the total sum prop.table(A)
\# Elements as fraction of rows margin
prop.table(A, 1)
\# Elements as fraction of columns margin
prop.table(A, 2)

Examples of Applying Functions

\# Sum of elements by rows
apply(A, 1, sum)
\# Sum of elements by columns
apply(A, 2, sum)
\# Standard deviation of elements by rows apply(A, 1, sd)
\# Standard deviation of elements by rows apply (A, 2, sd)
\# Maximum of elements by rows
apply(A, 1, max)
\# Minimum of elements by columns apply(A, 2, min)

Create a Matrix from a CSV (known to be numeric)

\# Common method: First creates a dataframe using read.csv() \# No row or column names imported
m1 <- as.matrix(read.csv("file.csv", sep=",", header = FALSE)) \# Row names in column 1, column names in row 1 (the header) m2 <- as.matrix(read.csv("file.csv", sep=",", row.names=1))
\# NOTE: RStudio uses built-in important functions such as read_csv \# from ‘readr` package; these produce tibbles (special dataframes m3 <- as.matrix(read_csv("file.csv", col_names = FALSE))

Principal Component Analysis Basics

```
# prcomp() comes with the default "stats" package, whic
# means that you don't have to install anything.
# PCA with function prcomp
pcal = prcomp(USArrests, scale. = TRUE)
# sqrt of eigenvalues
pca1$sdev
# view the loadings
head(pca1$rotation)
# view the principal components (aka scores)
head(pca1$x)
\# biplot (see upper figure, right biplot(pca1)
\# "scree" or loadings plot (see lower figure, right plot(pca1)
```


Reference: Advanced

Moore-Penrose Inverse of A ginv (A)
$y \$ v a l$: the eigenvalues of A $\mathbf{y} \$ \mathrm{vec}$: the eigenvectors of \mathbf{A} Y <- eigen (A)
Single value decomposition of A Y <- svd (A)
Cholesky factorization of A R <- chol (A)
QR decomposition of A
$\mathrm{y}<-\mathrm{qr}(\mathrm{A})$

pca1

Create a Matrix from a Data Frame

\# From ?data.matrix: "Return the matrix obtained by converting all the \# variables in a data \# frame to numeric mode and then binding them \# together as the columns of a matrix. Factors and ordered factors are \# replaced by their internal codes. NOTE: Use the usual techniques to
\# select a subset of `myDataFrame` if required
data.matrix(myDataFrame)

Create Matrices from Vectors...

...or trom one vector

\# Given a set of vectors a, b, c
\# Treating a, b, c as column vectors
> $a<-c(1,2,3) ; b<-c(4,5,6) ; c<-c(7,8,9)$
$>$ as.matrix(cbind (a, b, c)

a b c

[1,] 147
[2,] 258
[3,] 369
\# Treating a, b, c as column vectors
> as.matrix(rbind $(a, b, c))$
[,1] [,2] [,3]
$\begin{array}{llll}\text { a } & 1 & 2\end{array}$
$\begin{array}{llll}\mathrm{b} & 4 & 5 & 6\end{array}$

Naming rows and columns of a matrix

\# Naming rows of A, a 3×3 matrix
row.names(A) <- c("R1", "R2", "R3")
\# Naming columns of A
colnames(A) <- c("C1", "C2", "C3")

Compute the norm of a Vector

\# Compute a vector norm explicitly
sqrt(sum($\left.x^{\wedge} 2\right)$)
\# Compute vector norm using LAPACK.
\# See also "Compute the Norm of a Matrix" norm(x, type = "2")

Compute the norm of a Vector

\# Compute a vector norm explicitly sqrt(sum($\left.x^{\wedge} 2\right)$)
\# Compute vector norm using LAPACK.
\# See also "Compute the Norm of a Matrix"
norm(x, type = "2")

Compute the norm of a Matrix

\# Compute a matrix norm of x using LAPACK. The norm can be the one ("O")
\# norm, the infinity ("I") norm, the Frobenius ("F") norm, the maximum \# modulus ("M") among elements of a matrix, or the "spectral" or "2"-norm,
\# as determined by the value of type.
norm(x, type = "F")

