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Abstract. We propose a decentralized finance (DeFi) survival analy-
sis approach for discovering and characterizing user behavior and risks
in lending protocols. We demonstrate how to gather and prepare DeFi
transaction data for survival analysis. We demonstrate our approach us-
ing transactions in AAVE, one of the largest lending protocols. We de-
velop a DeFi survival analysis pipeline which first prepares transaction
data for survival analysis through the selection of different index events
(or transactions) and associated outcome events. Then we apply survival
analysis statistical and visualization methods such as median survival
times, Kaplan–Meier survival curves, and Cox hazard regression to gain
insights into usage patterns and risks within the protocol. We show how
by varying the index and outcome events, we can utilize DeFi survival
analysis to answer three different questions. What do users do after a
deposit? How long until borrows are first repaid or liquidated? How does
coin type influence liquidation risk? The proposed DeFi survival analy-
sis can easily be generalized to other DeFi lending protocols. By defining
appropriate index and outcome events, DeFi survival analysis can be
applied to any cryptocurrency protocol with transactions.

1 Introduction

The rapid growth in popularity of blockchain-based products like cryptocurren-
cies has brought with it a growth in the complexity of the blockchain ecosys-
tem. Myriad new products are being developed and deployed on the numerous
blockchains that now exist. Following the invention and adoption of these prod-
ucts by an increasing number of users, a new financial ecosystem has emerged:
Decentralized Finance (DeFi). The world of DeFi, though young, is already com-
prised of hundreds, if not thousands, of products and services. One such product
is known as a lending protocol. DeFi lending protocols offer a similar set of ser-
vices as banks offer to consumers in the world of traditional finance. Users utilize
the protocols to conduct transactions. For instance, a user of a DeFi lending pro-
tocol can take some cryptocurrency they own and deposit it into the protocol,
then accruing interest on their account balance. These users can also take out
loans through the protocol, much like a person can take out a loan from a bank.
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Since these lending protocols are growing in size along with the cryptocur-
rency market as a whole, an obvious first question might be, “how and why are
people using DeFi lending protocols?” There are multiple popular lending proto-
cols, and their data streams are varied. But these data streams share a common
structure; entities are conducting different types of transactions through time,
each involving varying amounts and types of cryptocurrency. The fact that these
entities (we will call them users, but they may be smart contracts) conduct trans-
actions at irregular intervals and the many types of transactions makes DeFi
lending streams challenging to understand. However, this complexity also exists
in domains such as healthcare and commerce, so there are myriad tools available
to analyze temporal data streams. In this paper, we demonstrate how to use one
such tool, “survival analysis,” to gain insight into DeFi transactions.

Survival analysis models time-to-event data. Survival analysis is widely used
in healthcare to understand the risk of death (or other events of interest) after
treatment, but can be used more generally to analyze the time between any two
events [5]. For example, it can be used to analyze the time between a user’s
borrow transaction and a transaction to repay that coin. As in healthcare, the
data is frequently right-censored : users are likely to have an outstanding loan
at any given time when we stop observing the data stream. In this analysis,
we demonstrate how to gather and prepare DeFi transaction data for survival
analysis and apply survival analysis statistical methods such as Kaplan–Meier
survival curves and Cox Hazard regression to understand usage patterns within a
protocol. Survival analysis has been previously used to understand loan defaults
in Centralized Finance (CeFi) [2, 6, 10], but applying this analysis directly to
DeFi is not straightforward since DeFi varies significantly from CeFi.

In order to interpret the results of this first use of survival analysis in DeFi, we
focus our analysis on looking solely at one lending protocol, developing generic
survival analysis tools for transaction analysis, and examining the results of
these tools for that protocol. These same tools can eventually be applied to
other lending protocols. The protocol chosen was AAVE1. At the time of this
writing (March 14, 2022), AAVE is the second-largest DeFi lending protocol,
with approximately $8.42 billion worth of crypto-assets locked in the protocol
according to DeFi Pulse2. We note, however, that survival analysis tools for
DeFi transactions can be used to analyze and gain insight into any DeFi protocol
that consists of transactions through time, including other lending protocols and
exchanges.

This paper is organized as follows: in the methods section, we describe the
AAVE data and the survival analysis methods used to study it. In the results
section, we demonstrate the use provided by survival analysis to answer three
different questions. We conclude with a discussion of the contributions of this
work and promising directions for future work.

1 https://aave.com
2 https://defipulse.com
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2 Methods

2.1 Data

The data used in this analysis comes primarily from The Graph3, a service that
indexes data from blockchains and allows for the querying of the indexed data.
For the work presented here, we sought to combine data from the primary seven
transaction types that AAVE records in order to give a comprehensive view of
all transactions that have taken place in AAVEv2 [1] since its deployment on
November 30, 2020. The data used in this analysis starts with the first trans-
actions of the AAVEv2 protocol on November 30, 2020, and ends on January
6, 2022. The seven transaction types we’ve pulled from The Graph include de-
posits, redeems, borrows, repays, liquidations, interest-rate swaps, and reserve
collateral usage toggling.

Combining these seven transaction types, we get a table that includes one
transaction per row, totaling 847,798 transactions. Table 1 summarizes the num-
ber of transactions of each type and their mean and median values. There are
some common features for each transaction, such as the user involved and the
time the transaction was made. Aside from liquidations, the transactions also
have one specific coin involved. Liquidations have two coins: a principal coin and
a collateral coin. AAVE transactions in our dataset have used 54 different coins.
We divide these coins into two types: stablecoin and non-stablecoin. A stablecoin
is from a class of cryptocurrencies that attempt to offer price stability (typically
in terms of USD), and that is backed by a reserve asset. The other types of coins
in the dataset are non-stablecoins.

Deposits and redeems in AAVE function as one might expect deposits and
withdrawals to function at a bank. A user can deposit a currency into the AAVE
protocol, accruing interest on their deposit through time. Upon depositing a
currency, AAVE mints the user some corresponding interest-bearing aTokens,
which represents how much of a reserve they’ve deposited into the lending pool.
These aTokens can be redeemed through the protocol to functionally withdraw
their previously-deposited currency from the lending pool.

Borrows and repays function as their names would suggest. It is important to
understand that borrowing a currency in AAVE is governed by smart contracts.
Anyone can borrow any amount of currency from the AAVE lending pool as long
as they follow the criteria specified by the appropriate smart contracts. Users
who borrow in AAVE use the currency they have deposited into the protocol
as collateral. Not all currencies that can be deposited in AAVE are allowable
as collateral. Additionally, users can choose which of their deposited assets they
want to allow for usage as collateral. In order to qualify to borrow some asset, a
user must have enough deposited assets in the system that are usable as collateral
so that the loan would be over-collateralized. The extent of over-collateralization
required depends on the specific currencies being used as collateral. More specific
details about the requirements for borrowing in AAVE can be read about in the
AAVE whitepaper [1].

3 https://www.thegraph.com
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Liquidations, the most complicated of the transactions in our data, have a lot
of unique information in each transaction. When a user performs a liquidation,
they are always liquidating the account of another user. This means there are
two users recorded for each liquidation transaction: the user being liquidated
(the liquidatee), and the user performing the liquidation (the liquidator). Ad-
ditionally, whereas other transaction types only interact with a single currency
at a time, liquidations involve two currencies. There is the principal currency
that the liquidator is paying off and the collateral currency that the liquidator
is buying.

Collateral and swap transactions are the simplest transactions. Each one is
functionally just the toggling of a setting in a user’s account. Collateral trans-
actions are made when a user wants to toggle whether a deposited currency can
be used as collateral for loans they’ve made or plan to make. Swap transactions
allow users to switch loans between stable interest rates and variable interest
rates for an individual currency.

Table 1: Summary of transaction types in AAVEv2 data collected from November
30, 2020 to January 06, 2022

Transaction Type Occurrences Mean Value (USD) Median Value (USD)

Borrow 124,899 $337,019.10 $14,983.18

Collateral 220,046 NA NA

Deposit 239,836 $482,453.00 $4783.75

Redeem 170,516 $843,124.80 $26,633.09

Repay 81,650 $448,525.00 $25,314.20

Swap 2937 NA NA

Transaction Type Occurrences Mean Principal (USD) Mean Collateral (USD)

Liquidation 7,914 $74,798.06 $79,682.95

2.2 Survival analysis for DeFi

Survival analysis is a collection of statistical procedures for data analysis in
which the outcome variable of interest is the time from an index event until
the outcome event [5]. To apply survival analysis to AAVE, we must pick two
events: the index transaction and the outcome transaction. The survival time is
the elapsed time between the index and outcome transactions. If, for example,
we want to understand how soon users borrow money after making a deposit,
then the index transaction is the user’s deposit, and the outcome transaction is
the first borrow the user makes thereafter. The data is right-censored since we
can only analyze data until the final date in our data. If a deposit transaction
has no matching borrow, it could be because the user never borrowed or because
the user borrow had not occurred during the period of analysis. Survival analysis
correctly analyzes right-censored data.
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The power of DeFi results from the fact that it can be performed on the time
duration between any desired pair of transactions analyzed by any of the widely
used statistical survival analysis techniques. In Section 3, we demonstrate how we
can address many different questions by changing the definition of the index and
outcome transactions. For each analysis below, we define precisely the index and
outcome transactions. Survival analysis estimates the survival function for each
of these pairs of transactions. The survival function captures the probability of
the outcome transaction not occurring through time. We utilize the ggsurvplot
function from the survminer package in R to produce Kaplan–Meier curves, the
most popular way to both estimate and visualize survival functions. For example,
Figure 1 shows survival curves for each transactions type. They represent the
time from the deposit to the first transaction of that type. If we are interested
in how variables affect time to the outcome event, we utilize Cox regression (or
proportional hazards regression). In Section 3.2, we utilize Cox regression to
see if the coin type of borrows (stable or non-stable) is associated with faster
liquidation rates.

3 Results

We use survival analysis to dissect the relationships between certain pairs of
transaction types. In doing so, we demonstrate the effectiveness of survival anal-
ysis in visualizing and quantifying user behavior in AAVE. We explain how to
transform the raw transaction data into forms suitable for survival analysis.
Then we show different ways to use this data and survival analysis tools to un-
cover patterns of user behavior through the selection of different index events,
the narrowing down of outcome events, and the separation of the data by other
relevant features.

3.1 What do users do after a deposit?

We show that a Kaplan–Meier survival curve can provide a useful picture of
how users behave after they deposit money into their accounts. Deposits are the
natural first transaction for a user to make in a lending protocol, since before
depositing any currency into an account, there aren’t really other possible actions
one can take. Thus, looking at how users behave after making deposits seems a
natural place to begin our analysis.

To convert transaction data into survival data, we treat each deposit present
in our data as an index event. This means we have 239,836 index events in
the survival analysis. The outcome of each event occurs when the user makes
their next transaction. The time difference between the deposit and the next
transaction serves as the “survival” time for this analysis, and so if a user just
makes a deposit and performs no subsequent transactions, that would manifest
in our data as a deposit that has “survived” so far, and would be censored by
time. For each deposit that is eventually followed by a subsequent transaction,
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Table 2: Survival Data from Deposits to Next Transaction
Time From Index Event (in hours) Censored? Next Transaction Type

0.0295 False Deposit

16.373 False Deposit

0.2765 False Borrow

2.58 True NA
...

...
...

we also record the type of transaction that follows. This gives data in the form
given in Table 2.

Starting with the simplest survival analysis method, we used the R function
surv_median to calculate the median time to the first transaction after a deposit.
We computed the median time to any transaction and for each transaction type.
We show these values in Table 3 ordered by median survival time. The percentage
of the time this transaction type followed a borrow is provided as well. The
median time between any two transactions is .017 hours. That means 50% of
the time, a deposit by a user is followed by a transaction by that same user in
less than 1.02 minutes. Note that for this specific analysis, we do not consider
the type of coin used in the second transaction (outcome event.)

From the median times to each transaction type following deposits, we can
more clearly compare the magnitudes of elapsed time for different outcome trans-
action types. The speed at which users tend to engage in redeem and collateral
transactions after a deposit is less than a second. The median survival to the
next deposit and borrows is on the order of minutes. In contrast, many users
take more than two days to repay or be liquidated after a borrow.

Table 3: Median time from deposit to next transaction in hours with percentage
occurring for each transaction type

Next Transaction Type Median Survival Time in hours Percentage

Any 0.017 100%

Collateral 0.000 (<1 second) 32.62

Redeem 0.000 (<1 second) 25.69

Deposit 0.103 27.11

Borrow 0.231 10.74

Swap 15.108 0.13

Repay 25.488 2.68

Liquidation 61.053 0.22

We can gain further analysis by plotting survival curves for this data split
by the type of subsequent transaction to gain a more nuanced understanding of
how quickly users make each type of transaction following a deposit. When we
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separate the survival curve by the next transaction type, the usage of survival
analysis deviates slightly from its original intent. This is because when we sepa-
rate the curve by subsequent transaction type, we are effectively separating the
curve by a variable that only exists because the index event has “not survived,”
i.e., the existence of a “next transaction type” means the outcome event has
occurred, and thus we’ve cut out the censored transactions. However, we believe
the value of the visualization remains intact.

Figure 1 shows seven different survival curves. As is the case for any survival
curves, each curve begins at time 0 and has a probability of survival of 1. Then,
as each curve progresses through time, the probability of “survival” drops in
proportion to how many of the cases represented by each curve have reached
their corresponding outcome event. If a curve drops quickly to a low survival
probability, that means users tend to make that transaction type quickly after
making a deposit.

p < 0.0001
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Fig. 1: Kaplan–Meier survival curves from a user’s deposits to their next transac-
tion shows noticeable differences between which transactions users tend to make
after a deposit.

Looking at Figure 1, it is apparent that the most common transaction users
make after a deposit is the collateral transaction. This makes sense, as one of
the requirements in AAVE for a user to take out a loan is that the loan is over-
collateralized; according to the requirements of the protocol, the user cannot take
out a loan without having any currency in their account that is marked as collat-
eral. Still, the “survival” of a deposit until a collateral transaction is brief. The
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survival curve for collateral dips straight down and hits zero almost immediately,
indicating that users don’t wait long before making collateral transactions.

3.2 How long until borrows are repaid or liquidated?

Since survival analysis allows for flexible choices of index and outcome events, we
turn our focus now to using borrows as the index events and the relevant trans-
actions of repays and liquidations as the outcome events. Using only transaction-
level data to analyze borrows makes it difficult to track a loan in its entirety.
There is no end date to the loan. The user can make several borrows of a coin
and then maintain the loan that accrues interest until they repay it in one or
more repay transactions for that coin or until part or all of the loan is liquidated.
When converting the transaction data into a form usable for survival analysis
with borrows as the index events, we had to decide what was an appropriate
outcome event. To avoid making assumptions about when a loan is totally re-
paid (either through liquidations or repay transactions), we define the outcome
events as just the first repayment that a user makes or the first liquidation that
is made for the borrowed currency. Thus, to be clear, the following analysis in
Figure 2 does not show how long it takes for loans to be totally repaid through
repays or liquidations, but just how long it takes for them to start being repaid
through either means.

We also choose to split the two curves by whether the borrowed coin is
a stablecoin. The use cases for borrowing stablecoins versus non-stablecoins are
quite different, so we hoped to see a drastic difference in the repayment schedules
and liquidation tendencies for these different coin types, and indeed this is what
we see in Figure 2.
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Fig. 2: Borrow to first repay and first liquidation analysis shows significant differ-
ences between stablecoins (red) and non-stablecoins (blue). Note that the time
ranges for repay is smaller than that of liquidation.
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Clearly, from these survival curves, users tend to repay loans of stablecoins
much more often than non-stablecoin loans. Almost all loans of stablecoins end
up being repaid at least in part by the 402-day cutoff, which is as much data
as we have. This is in stark contrast with the non-stablecoin borrows, for which
only about 50% of all loans have seen even a single repayment. We see similarly
contrasting behavior for the frequency that loans of each coin type are liquidated.
Loans of stablecoins are liquidated significantly more often than loans of non-
stablecoins. Unsurprisingly, liquidations as a whole occur far less frequently than
repayments, so the survival probability of loans relative to liquidations is much
higher than loans to repayments, but the same patterns are present with respect
to the type of coin being borrowed.
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Fig. 3: Borrow to first repay and first liquidation analysis both show differences
between stable and non-stablecoins.

We can also use the survival data to create density plots for the median
time to repayment or liquidation for each coin type, which provides additional
clarity on exactly how long it takes for repayments or liquidations to occur. These
median repayment and liquidation times can be seen in Figure 3. From these, we
can see that, despite fewer repayments and liquidations of non-stablecoins, the
median times to these events are quicker than they tend to be for stablecoins.
Most people make their first repayment of a borrowed non-stablecoin in five
days or less, whereas for borrowed stablecoins, the median time until the first
repayment is about ten days. The timelines for liquidations to occur are longer,
with the highest proportion of liquidated borrows of non-stablecoins occurring
between 20 and 30 days following the borrow, and between 25 and 75 days for
borrows of stablecoins. Still, the contrasting behavior between stablecoin and
non-stablecoin borrows are similar for the time taken to repays and time taken
to liquidations.
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3.3 How does coin type influence liquidations?

In the previous section, we saw the dramatic impact of coin-type of the principal
on time to the first liquidation of a borrow. We hypothesize that the combination
of the principal and the collateral may lead to further insight into the risk of
borrows. Thus we further separate the borrow-to-liquidation data by factoring in
what collateral was purchased and what principal types were specifically paid off
by the liquidator. We perform the same index and outcome events as the prior
liquidation analysis; only now do we analyze borrows associated with liquidation.
This gives the curves seen in Figure 4. Since we are splitting the curves by what
principal and collateral were paid off and purchased at the time of the liquidation,
all the curves do end up with a 0% probability of survival, similar to the curves
in Figure 1. Again though, we can still use the curves to gain insight into the
relative riskiness of the principal:collateral combinations that people can have in
their accounts. According to the log-rank test, the differences in the curves are
statistically significant.

The definition of the outcome event in this analysis is quite different. To
gain a more accurate picture of the liquidated user’s account, we aggregated
liquidation events to gain more information as to which coins the users have as
collateral in their account. Even though each liquidation transaction only records
one principal type and one collateral type, sometimes a user will be the subject of
multiple liquidations in quick succession. It would be inaccurate to consider these
liquidations as separate events; they really are all part of one bigger liquidation
event. Thus, in our transaction data, if a user is liquidated multiple times in
quick succession with no intermittent non-liquidation transactions, we aggregate
them into one bigger liquidation transaction. The outcome event is the combined
liquidation transaction, with the time being the first liquidation transaction. This
lets us see whether there were multiple types of collateral and principal coins
involved in the event. Thus, if a user has both stablecoins and non-stablecoins in
their account as collateral, or if they’ve taken out loans of both stablecoins and
non-stablecoins, we mark the collateral or principal, respectively, as “Mixed.”

Table 4 shows an example of where we can use a Cox proportional hazard
model to more effectively quantify the differences between survival probabilities
of each type of principal:collateral combination leading to liquidations. For the
Cox proportional hazard model, we need to choose one of the combinations of
principal:collateral to which to compare the others, which tells us proportionally
how risky the other types of principal:collateral combinations are relative to
the benchmark combination. If we select the stable:stable combination as the
benchmark, we get the quantification of risk via the coxph function from the
survminer package as seen in Table 4.

The “Coefficient” column of this table indicates the relative riskiness of the
loan types as compared to the benchmark type of stable principal and stable
collateral. Negative coefficients are indicative of lesser risk, meaning that any
of the principal:collateral combinations that have a negative coefficient are less
likely to be liquidated than the stable:stable combination. The p-value tells the
statistical significance of these coefficients, with lower p-values indicating that
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p < 0.0001
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Fig. 4: Survival curves for different combinations of principal and collateral coin
types.

the corresponding coefficients were less likely to be generated by chance. The
results show that the combinations of stablecoin principal with non-stablecoin
collateral tend to be liquidated significantly sooner than stablecoin principal with
stablecoin collateral loans. Borrows with stablecoin principal with non-stablecoin
collateral are much riskier since the price of the cryptocurrency in dollars is
highly volatile. We see that liquidations for borrows with mixed collaterals reduce
the risk for both types of principals. There were no significant differences in time
to liquidation compared with stable:stable combinations for the non-stable:stable
and non-stable:non-stable combinations.

Table 4: Cox proportional hazards coefficients quantifying risk of liquidation.
Bolded principal-collateral combinations have significant differences in risk of
liquidation relative to stable:stable. Percentage of liquidation events indicates
number of events of each type. Stable:stable constitutes 1.22% of liquidations.

Principal:Collateral Combination Coefficient p-value Percentage

Stable:Non-Stable 0.24499 0.02903 86.64

Non-Stable:Stable -0.08756 0.55238 1.62

Non-Stable:Non-Stable -0.17044 0.14967 9.43

Stable:Mixed -0.32461 0.06328 0.83

Non-Stable:Mixed -0.74976 0.00617 0.24
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4 Related Work

With an over-collateralized loan, a borrower must post collateral, i.e., provide
something of value as security to cover the value of the debt, where the value of
the collateral posted exceeds the value of the debt. This way, collateralization
simultaneously ensures that the lender (likely a smart contract) can recover
their loaned value and provides the borrower with an incentive to repay the
loan. The “health factor” (HF) is a custom threshold in lending systems. If the
debt collateral falls below the HF (typically below 1), the debt position may be
opened for liquidation. Then the liquidators can purchase the locked collateral
at a discount and close the borrower’s debt position. Thus, leveraged positions
are subject to liquidation when the debt becomes unhealthy, and a liquidator
can repay the debt and benefit from a liquidation spread.

Given this novel form of automatic lending, a growing body of literature has
studied liquidations on borrowing and lending platforms in DeFi. Qin et al. [9]
have analyzed risk management provided by liquidators, acting on the protocol’s
user accounts. They have measured various risks that liquidation participants are
exposed to on four major Ethereum lending pools (i.e., MakerDAO, AAVE, Com-
pound, and dYdX) and quantified the instabilities of existing lending protocols.
They have illustrated that the commonly used incentive mechanisms tend to fa-
vor liquidators over borrowers, causing the problem of so-called over-liquidation,
leading to unnecessary high losses for borrowers. The only recourse the borrowers
have to avoid such liquidations is to monitor their loan-to-value ratio when the
market changes quickly because even a random drop in market prices can result
in a cascade of liquidations. If there are any drops in the market, it can lead
to self-accelerating pressure to sell, which further causes more problems for a
blockchain-based DeFi, such as network congestion that leads to steep gas costs.
We witnessed such an event in the ETH market collapse of March 13, 20204 that
left some borrowers unable to react, despite imminent liquidations. It can be
particularly bad for borrowers who get liquidated if market prices recover after
a dip again, leaving them deprived of subsequent upward price participation. In
general, regardless of market conditions, liquidations in DeFi are widely prac-
ticed, and related works such as Qin et al. [9] have quantified that over the years
2020 and 2021, liquidators realized a financial profit of over 800M USD while
performing liquidations.

Stablecoins play a significant role in liquidations, as they have several char-
acteristics that are directly tied to liquidation mechanics. For example, a user
may not want to sell the token collateral, which is usually in the form of a sta-
blecoin, but instead hold it indefinitely as a means of passive income, which
might exceed the cost of borrowing, making the transaction profitable. Early
empirical evidence on the stability of crypto-backed loans with stablecoins has
been studied by Kozhan and Viswanath-Natraj [7]. They specifically focused on
the price volatility in the MakerDao protocol, which introduced the world’s first
decentralized stablecoin called Dai that is soft-pegged to the US Dollar, i.e.,

4 https://coinmarketcap.com/historical/20200313
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it uses a collateralized debt position mechanism to keep the price stable with
respect to the US Dollar. They have analyzed how collateral stability increases
peg stability and found a positive relationship between collateral risk and the
price volatility of the stablecoin Dai.

The efficiency of lending pool liquidations has been studied by Perez et al. [8],
in which they introduced a lending pool state model that is instantiated with his-
torical user transactions observable in the Compound5 implementation deployed
on Ethereum. Their model abstraction facilitates the observation of state effects
of each interaction and investigates the latency of user liquidations following
the under-collateralization of borrowing accounts. Similarly, Bartoletti et al. [3]
provide an abstract formal state transition model of lending pools and prove
fundamental behavioral properties, which had previously only been presented
informally in the literature. Additionally, the authors examine attack vectors
and risks, such as utilization attacks and interest-bearing derivative token risk.

As the demand for loans in crypto-assets grows, the borrowing interest rate
goes up. In a bullish crypto market, speculators may be keen to borrow funds
even if there is a high interest rate, in expectation of an appreciation in the
assets of their leveraged long position as demonstrated by Xu et al. [13]. Such
an environment is advantageous for lenders, resulting in higher yields to them.
Compound and AAVE, two major DeFi lending protocols, have witnessed the
borrow APY of the stablecoin USDC increasing from a low of 2-3% in May 2020
to as high as 10% in April 2021 (as of this paper writing in March 2022, the
APY is hovering at 2% in Compound and AAVE, but other protocols such as
Celcius, BlockFi and Nexo offer upwards of 8% APY) 6. In a bullish market,
the yield generated is incorporated in interest-bearing tokens, such as aTokens
from AAVE analyzed in this paper. However, as was already noted, the wild
fluctuations in the market result in unexpected liquidation events, as evidenced
from this paper’s results.

Most of the related works approach the issue of liquidation at a conceptual
level or rely on aggregate flow data. In contrast, our paper uses transaction-level
blockchain data to provide a more microscopic view on the issue combined with
survival analysis techniques.

5 Discussion and Future Work

This work defines a pipeline for survival analysis of DeFi lending protocols which
includes data aggregation, cleaning, converting to a data abstraction model,
and performing powerful survival statistical analyses and visualizations to gain
insights. Using AAVE lending data in three different scenarios, we demonstrate
how to gain insights into user behaviors and loan risks by defining appropriate
index and outcome events and then applying survival analysis.

Each scenario is characterized by distinct definitions of the index and out-
come transactions in the survival analysis. We characterize user behaviors using

5 https://compound.finance
6 https://defirate.com/usdc/?amount=100&symbol=USDC&term=365&rate type=lend
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survival analysis of AAVE users’ next transaction. Our analysis of borrowed coin
types shows the value of survival analysis for discovering factors contributing to
events. Our survival analysis of borrows to repays and liquidations showed that
borrows of stablecoins versus non-stablecoins exhibit very different characteris-
tics. Users hold non-stable loans longer before the first repayment. But if they
do repay, they tend to repay more quickly. We could get a deeper understand-
ing of AAVE user behavior by taking a more refined look at the types of coins
and transaction volumes, incorporating external factors such as coin prices in
the survival analysis, and defining alternative index and outcome events. Using
machine learning to create clusters that capture different behaviors (e.g., retail
versus institutional investors), and then doing survival analysis could also be
very illuminating. We leave these to future work.

This work represents just the first step in the use of survival analysis in
DeFi. We note that these DeFi survival analysis techniques could be generalized
to other DeFi lending protocols. DeFi survival analysis can be applied to any
cryptocurrency protocol with transactions. Hazard analysis and other types of
survival analysis and visualization methods could be used. As future work, we
will prepare a toolkit for DeFi survival analysis with associated dashboards and
demonstrate it on other DeFi Protocols.

One limitation of this research is that it does not address the rich DeFi
ecosystem, which has many interacting protocols and coin prices. We are al-
ready exploring the use of more advanced Artificial Intelligence (AI) methods
for the analysis of transaction data developed for commerce and health [4, 12]
that could incorporate more aspects of the DeFi ecosystem. These could be used
for segmenting users and predicting behaviors and prices. Early results analyzing
AAVE transactions using Neural Temporal Point Processes are very promising
[11]. DeFi represents an exciting new domain for AI research in transaction
modeling since DeFi is a compelling use case, and all the datasets are public by
definition.

The code used to generate the figures in this paper is available in a public
GitHub repository7.
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