
COVID Contact-Tracing:
Campus Wifi
 Emily Hu, Freling Smith, Kara Kniss, Ti Dinh, Varun Nair, Yichen Li

The Rensselaer IDEA
Rensselaer Polytechnic Institute

What They Forgot to Teach You about R!
The stuff you need to know about R, besides data analysis
Wednesday, 28 Feb 2024

RPIrates: The RPI R Users Group
The Rensselaer IDEA
Rensselaer Polytechnic Institute

Tall

"What They Forgot to Teach You About R" (The Book)
This book focuses on content intrinsically
related to the infrastructure surrounding data
analysis in R, but does not delve into the data
analysis itself.

https://rstats.wtf/
https://rstats.wtf/

"What They Forgot to Teach You About R" (The Book)
This book focuses on content intrinsically
related to the infrastructure surrounding data
analysis in R, but does not delve into the data
analysis itself.

● A holistic workflow provides guidance
on project-oriented workflows that
address common sources of friction in
data analysis.

https://rstats.wtf/
https://rstats.wtf/

"What They Forgot to Teach You About R" (The Book)
This book focuses on content intrinsically
related to the infrastructure surrounding data
analysis in R, but does not delve into the data
analysis itself.

● A holistic workflow provides guidance
on project-oriented workflows that
address common sources of friction in
data analysis.

● Personal R administration empowers
R users to confidently manage their R
programming environment.

https://rstats.wtf/
https://rstats.wtf/

"What They Forgot to Teach You About R" (The Book)
This book focuses on content intrinsically
related to the infrastructure surrounding data
analysis in R, but does not delve into the data
analysis itself.

● A holistic workflow provides guidance
on project-oriented workflows that
address common sources of friction in
data analysis.

● Personal R administration empowers
R users to confidently manage their R
programming environment.

● All is Fail showcases functions,
options, and RStudio capabilities for
debugging code, facilitating more
efficient resolution of errant code.

https://rstats.wtf/
https://rstats.wtf/

"What They Forgot to Teach You About R" (The Book)
This book focuses on content intrinsically
related to the infrastructure surrounding data
analysis in R, but does not delve into the data
analysis itself.

● A holistic workflow provides guidance
on project-oriented workflows that
address common sources of friction in
data analysis.

● Personal R administration empowers
R users to confidently manage their R
programming environment.

● All is Fail showcases functions,
options, and RStudio capabilities for
debugging code, facilitating more
efficient resolution of errant code.

● Session Info provides tips on viewing
the state of your session

https://rstats.wtf/
https://rstats.wtf/

"What They Forgot to Teach You About R" (The Book)
I. Introduction

A. What They Forgot to Teach You About R
II. A holistic workflow

A. Saving source and blank slates
B. Project-oriented workflow
C. Practice safe paths
D. How to name files (or things)
E. API for an analysis

III. Personal R Administration
A. Meta Project-Oriented Workflow
B. R Startup
C. Installing packages
D. Reproducible Environments (renv)
E. Installing R (rig)
F. Maintaining R

IV. All is Fail
A. Debugging R code
B. Read the source
C. Reproduce the problem

V. Session info

https://rstats.wtf/

https://github.com/rstats-wtf/what-they-forgot

https://rstats.wtf/
https://rstats.wtf/source-and-blank-slates
https://rstats.wtf/projects
https://rstats.wtf/practice-safe-paths
https://speakerdeck.com/jennybc/how-to-name-files
https://speakerdeck.com/jennybc/zen-and-the-art-of-workflow-maintenance?slide=57
https://rstats.wtf/personal-radmin
https://rstats.wtf/r-startup
https://rstats.wtf/installing-packages
https://rstudio.github.io/renv/
https://github.com/r-lib/rig
https://rstats.wtf/maintaining-r
https://rstats.wtf/debugging-r
https://rstats.wtf/read-source
https://rstats.wtf/reprexing
https://rstats.wtf/sessioninfo
https://rstats.wtf/
https://github.com/rstats-wtf/what-they-forgot

"What They Forgot to Teach You About R" (The Book)
I. Introduction

A. What They Forgot to Teach You About R
II. A holistic workflow

A. Saving source and blank slates
B. Project-oriented workflow
C. Practice safe paths
D. How to name files (or things)
E. API for an analysis

III. Personal R Administration
A. Meta Project-Oriented Workflow
B. R Startup
C. Installing packages
D. Reproducible Environments (renv)
E. Installing R (rig)
F. Maintaining R

IV. All is Fail
A. Debugging R code
B. Read the source
C. Reproduce the problem

V. Session info

https://rstats.wtf/

https://github.com/rstats-wtf/what-they-forgot

https://rstats.wtf/
https://rstats.wtf/source-and-blank-slates
https://rstats.wtf/projects
https://rstats.wtf/practice-safe-paths
https://speakerdeck.com/jennybc/how-to-name-files
https://speakerdeck.com/jennybc/zen-and-the-art-of-workflow-maintenance?slide=57
https://rstats.wtf/personal-radmin
https://rstats.wtf/r-startup
https://rstats.wtf/installing-packages
https://rstudio.github.io/renv/
https://github.com/r-lib/rig
https://rstats.wtf/maintaining-r
https://rstats.wtf/debugging-r
https://rstats.wtf/read-source
https://rstats.wtf/reprexing
https://rstats.wtf/sessioninfo
https://rstats.wtf/
https://github.com/rstats-wtf/what-they-forgot

What has seven years of Data INCITE with R taught us?

What has seven years of Data INCITE with R taught us?

● Coding in source files is critical: .R and/or .Rmd plus github
● Interactive coding makes for bad environment and workspace habits
● Most new R users don't understand file paths
● Thoughtful thing-naming -- variables, dataframes, files -- makes life easier!
● Having a project-oriented view from the start makes life easier at the end!
● R sometimes behaves weirdly; "clean living" can avoid those occasions
● For long-time users, it's critical to keep up-to-date (R, RStudio, packages)
● Most users don't have a strategy for debugging
● Most users don't communicate errors well (ie "reproducible examples")

29 Jul 2020

Most students are in
this zone…

Save your source, not your workspace
● Do your coding in .R ("script") or .Rmd ("markdown" or "notebook") files
● RStudio spoils users by aggressively saving state

○ Makes it easy to walk away and come back to where you left off
○ Workspace (e.g. editing session, open files) and Environment (data and functions)

● Everything you do in the console goes into the environment
○ Esp. hacking variables or dataframes to make some code work

● This is the #1 reason why "My code works in RStudio but doesn't knit!"
○ Knitr only runs the code in your notebook and ignores your environment

● Saving your workspace (ie as mywork.RData) is rarely useful

Always start R with a clean slate
● Sweep your Environment and restart your R

session early and often
○ These are the first steps to debugging the "it won't

knit" problem
○ Restarting your session only doesn't clear your

environment

● The "pros" -- people who develop packages --
always start clean

● Think like a pro; start every work session with
a completely blank slate!

Restart R often during development
● Clear your

environment and/or…

Restart R often during development
● Clear your

environment and/or…
● Restart your R

session or…

Restart R often during development
● Clear your

environment and/or…
● Restart your R

session or…
● Quit session

Objects that take a long time to create
● Parsing "raw" CSV files and running data preparation pipelines takes time

○ Loading a pre-cooked binary version of data is much faster!!

● Repeating data prep across teams is wasteful and sometimes dangerous
● Data INCITE best practice: Once the data prep is done, save out as .Rds

○ Create "helper" scripts or notebooks that read in and transform the data into dataframes
○ In those files, save the dataframes out to .Rds, e.g. saveRDS(myData, "myData.Rds")
○ In your analysis files, simply load the .Rds: myData <- readRDS("myData.Rds")
○ Share these .Rds files across your team (shared directory or github)

● Store these .Rds files in your project's github
○ Very large data may require github large file storage: https://git-lfs.com/

https://git-lfs.com/

We need to talk about setwd("path/that/only/works/on/my/machine")

● Always assume your code might end up anywhere
○ Sharing scripts with teammates
○ Sharing github repositories with with colleagues
○ Cloning repos on different machines

● Use relative paths that don't depend on locality
○ Use the Linux "start from here" syntax, e.g. source("./utilities/myHelper.R")

● If you must use absolute paths, make sure they're valid in all cases!
○ Example: faces <- read_csv("/academics/MATP-4400-S24/data/faces.csv") (okay on Cluster)

Organize work into "projects"
A simple project A more complex project

RStudio Projects
● RStudio has built-in project capabilities
● The advantage is that it stores the state of

your work in a .Rproj file, and makes it
easy to resume:

○ A new R session (process) is started
○ The .Rprofile file in the project's main directory (if any) is sourced by R
○ The .RData file in the project's main directory is loaded

■ …if project options indicate that it should be loaded
○ The .Rhistory file in the project's main directory is loaded into the RStudio History pane

■ …and used for console Up/Down arrow command history
○ The current working directory is set to the project directory
○ Previously edited source documents are restored into editor tabs
○ Other RStudio settings (e.g. active tabs, splitter positions, etc.) are restored to where they were the

last time the project was closed.

How to name files (and other stuff…)

See Jenny Bryan, naming things

https://speakerdeck.com/jennybc/how-to-name-files

29 Jul 2020

See Jenny Bryan, naming things

https://speakerdeck.com/jennybc/how-to-name-files

29 Jul 2020

See Jenny Bryan, naming things

https://speakerdeck.com/jennybc/how-to-name-files

R’s startup
procedures
are complex…

See this

https://support.posit.co/hc/en-us/articles/360047157094-Managing-R-with-Rprofile-Renviron-Rprofile-site-Renviron-site-rsession-conf-and-repos-conf

Summary of how to control R options and environment variables on startup

.Renviron
● .Renviron is a user-controllable file that can be used to create environment variables
● Especially useful to avoid including credentials like API keys inside R scripts
● Written in a key-value format, so environment variables are created as follows:

○ Key1=value1
○ Key2=value2
○ ...

● Sys.getenv("Key1") will return "value1" in an R session.
● As with the .Rprofile file, .Renviron files can be at either the user or project level.

○ If there is a project-level .Renviron, the user-level file will not be sourced.
○ The usethis package includes a helper function for editing .Renviron files from an

R session with usethis::edit_r_environ()

.Rprofile
● .Rprofile files are user-controllable files to set options and environment variables.
● .Rprofile files can be either at the user or project level.

○ User-level .Rprofile files live in the base of the user's home directory
○ Project-level .Rprofile files live in the base of the project directory

● R will source only one .Rprofile file
○ If you have both a project-specific .Rprofile file and a user .Rprofile file that you want to

use, you must explicitly source the user-level .Rprofile at the top of your project-level
.Rprofile with source("~/.Rprofile")

● .Rprofile files are sourced as regular R code; setting environment variables must be done
inside a Sys.setenv(key = "value") call

● An easy way to edit .Rprofile files is to use the usethis::edit_r_profile() function from within an
R session. You can specify whether you want to edit the user or project level .Rprofile

Reproducible Environments

The renv Package
● The renv package helps you create reproducible environments for your

R projects.
● Use renv to make your R projects more isolated, portable and reproducible.

○ Isolated: Installing a new or updated package for one project won’t break your
other projects, and vice versa. That’s because renv gives each project its own
private library.

○ Portable: Easily transport your projects from one computer to another, even
across different platforms. renv makes it easy to install the packages your project
depends on.

○ Reproducible: renv records the exact package versions you depend on, and
ensures those exact versions are the ones that get installed wherever you go.

Maintaining R

Common package installation issues
● "ERROR: failed to create lock directory"

○ R is unable to create the 00LOCK-<package> directory it needs for installation
○ Most of the time, this is due to a failed previous installation attempt (e.g. interrupted)
○ SOLUTION: In RStudio's Linux terminal, delete the existing directory
○ R tells you what to delete in the error message

● "package is not available for this version of R"
○ install.packages() cannot find a CRAN binary for the installed version of R
○ SOLUTION: Install the package from source (see other slides)

● Package install failed because installed dependencies are for older R
○ You installed the dependencies under a previous version of R and they're still lurking
○ Packages built under different versions of R can't co-exist
○ SOLUTION: In RStudio's Linux terminal, delete the old package installs:

$ rm -Rf /home/RCSID/R/x86_64-pc-linux-gnu-library/X.Y

Common package installation issues
● "ERROR: failed to create lock directory"

○ R is unable to create the 00LOCK-<package> directory it needs for installation
○ Most of the time, this is due to a failed previous installation attempt (e.g. interrupted)
○ SOLUTION: In RStudio's Linux terminal, delete the existing directory
○ R tells you what to delete in the error message

● "package is not available for this version of R"
○ install.packages() cannot find a CRAN binary for the installed version of R
○ SOLUTION: Install the package from source (see other slides)

● Package install failed because installed dependencies are for older R
○ You installed the dependencies under a previous version of R and they're still lurking
○ Packages built under different versions of R can't co-exist
○ SOLUTION: In RStudio's Linux terminal, delete the old package installs:

$ rm -Rf /home/RCSID/R/x86_64-pc-linux-gnu-library/X.Y

Your RCS username

Old R version number
e.g. 3.6 or 4.1 or…

How to install packages from source
● The most common type of package you install is a binary package.

○ Packages released on CRAN are built as pre-compiled binaries for specific versions of R
● It is sometimes useful to install packages which do not have a pre-built binary available

○ e.g. development versions not yet released on CRAN
○ e.g. older versions of released packages
○ e.g. packages you've built locally

● There are a few main functions used to install source packages.
○ devtools::install_dev() to install the latest dev version of a CRAN package
○ devtools::install_github() or devtools::install_git() to install any package directly from GitHub
○ devtools::install_version() to install previously released CRAN versions of a package.

● You can also install the official CRAN version from source:
○ install.packages(path_to_file, repos = NULL, type="source")
○ …where "path_to_file" is listed on the package's CRAN page,

e.g. for dplyr: https://cran.r-project.org/src/contrib/dplyr_1.1.4.tar.gz

How to upgrade an installed package to the latest version

1. Click on
"Packages" tab

2. Click on
"Update"

3. Select
package(s) you
wish to update

4. Give it your
blessing…

Debugging R code

Debugging your code
● Sometimes bugs only appear after multiple levels of

calls and are hard to diagnose.
● There are a few common strategies to use when

debugging your code:
○ Use traceback() to determine where a given error is occurring.
○ Output diagnostic information in code with print(), cat() or message() statements.
○ Use str() to sanity-check the structure of objects
○ Use browser() to open an interactive debugger before the error
○ Use debug() to automatically open a debugger at the start of a function call.
○ Use trace() to start a debugger at a location inside a function.

More on browser()
● browser() is extremely useful for debugging R (esp. Shiny code)
● Insert a call to browser() in your code to stop execution at that point and open an

interactive debugger.
○ Works just like the R console
○ In the browser console you can run R commands to examine at objects in the current environment, modify

objects and continue executing.

● Some useful things to do:
○ Use ls() to determine what objects are available in the current environment

■ This allows you to see exactly what things you can examine
○ Use str(), print() etc. to examine the objects
○ Use n to evaluate the next statement. Use s to evaluate the next statement, but step into function calls.
○ Use where to print a stack trace
○ Use c to leave the debugger and continue execution
○ Use Q to exit the debugger and return to the R prompt.

Debugging in RStudio: Breakpoints
● In the RStudio editor you can set an editor breakpoint by clicking to the left

of the line number in the source file
● A breakpoint is equivalent to a browser() call, but you avoid needing to

change your code like browser().

Debugging in R Markdown documents
● If your code "works" interactively but doesn't knit, try the following:

○ Sweep your environment
○ Restart your R session
○ Run all or single-step through your code chunks, playing close attention to your Environment
○ Most of the time, you fixed a problem interactively but didn't save your changes in your code

● The easiest way to debug most errors is to run the code chunk by itself
○ Be careful to Run all chunks above before running the problem chunk
○ For complex code, insert browser() and/or use the other methods

● Don't debug by repeatedly knitting!!!
○ You need to isolate the problem by stepping through the code and examining your internal

structures as they are transformed

Creating a "reprex" (reproducible examples)
● R people can't help you if they can't understand and replicate your problem
● The universal currency for getting help is the reprex
● Generally, a reprex is a sample of code that reproduces the problem
● Do not ask for help without showing

code that illustrates the problem!
● Do not paste only your error message!
● Do not simply say "Knitting failed; why?!?!"
● A package exists for creating beautiful

R reprex's:
See: https://reprex.tidyverse.org/

https://reprex.tidyverse.org/

sessionInfo()

Attached
packages

Installed
non-"base"
packages

Running on the Cluster!

