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Introduction

 Natural language is first acquired in the audio 
modality beginning in infancy.

 Children are typically fluent communicators 
years before they read or write their first word 
of text.

 Can Large Language Models (LLMs) learn to 
model language without text?

◦Can LLMs directly understand and 
generate audio?



Introduction
 Audio enables more natural human-computer interaction by interacting through speech. Applications 
include:

◦ Digital Assistants (e.g., Alexa)

◦ Accessibility Aids

◦ Customer Service Automation

◦ Transcription & Translation

◦ More engaging chat agents

◦ Smart NPCs for video games & immersive worlds

Immersive SDS for NPC concept:
https://www.youtube.com/watch?v=FzSIJ7d3lt0

https://www.youtube.com/watch?v=FzSIJ7d3lt0
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Background: Language Modeling
 In text generation, we feed tokens in and 
predict the next ones autoregressively.

 (e.g., GPT 2-4, Llama 1-3, Mixtral, etc.)

 Input text is first preprocessed by 
tokenization into words or subwords:
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Linear + Softmax

…       Lo              rem           _ip             sum          _dolor

”Lorem ipsum dolor sit amet”

[”Lo”, ”rem”, ”_ip”, ”sum”, ”_dolor”, ”_sit”, ”_a”, ”met”]

[5643, 6568, 332, 2224, 99, 129, 22931, 2321]
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Audio Tokenization
 The immediate question:

 When building an audio language model, what are the tokens?
◦ “Acoustic Tokens” need to represent units of sound rather than units of language.

 For this, we turn to the Audio Codec (e.g., MP3, AAC, FLAC, WAV, etc…):

These can be 
our Tokens!

Encoder … 2, 52, 35, 1 
…

Decoder

Sampled audio Reconstructed audio

General
Audio
Codec

Discrete digital signal
(highly compressed)



Audio Tokenization
 The immediate question:

 When building an audio language model, what are the tokens?
◦ “Acoustic Tokens” need to represent units of sound rather than units of language.

 For this, we turn to the Audio Codec (e.g., MP3, AAC, FLAC, WAV, etc…):

These can be 
our Tokens!

Encoder … 2, 52, 35, 1 
…

Decoder

Sampled audio Reconstructed audio

General
Audio
Codec

Discrete digital signal
(highly compressed)

For 44.1 kHz sampling rate:
MP3, AAC: 96-320 Kbps
Neural Audio Codec: 1.5-24 
Kbps!!!



Audio Tokenization
 A neural audio codec uses a neural encoder to encode a sequence of continuous vector 
representations of the sampled audio over time, usually at a much lower frequency:

◦ E.g., raw audio sampled at 24kHz, vectors produced at 75Hz

◦ But…. this is even more information than the raw audio waveform!

Encoder Decoder

Sampled audio Reconstructed audio

0.1
-0.3
0.4
…

-0.1

0.2
-0.4
0.8
…

-0.9

-0.4
-0.1
-0.6
…
0.5

0.3
-0.5
0.9
…
0.2

-0.3
0.4
-0.4
…

-0.7

…

Encoded feature vectors

t=1    t=2   …       …      …     
t=N

Enter: Vector Quantization!



Audio Tokenization
 Vector Quantization (VQ) quantizes (discretizes) 
continuous vectors by mapping each of them to the 
centroids of their respective Voronoi regions in the space.

 It’s basically just k-means!*

 *K-means usually refers to Lloyd’s algorithm, but that is just one of many ways to 
construct this cluster space. Others include Kohonen’s SOM and VQ-VAE.

Encoder Decoder

Sampled audio Reconstructed audio
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-0.3
0.4
…
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0.2
-0.4
0.8
…

-0.9
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-0.1
-0.6
…
0.5

0.3
-0.5
0.9
…
0.2

-0.3
0.4
-0.4
…

-0.7

…

Encoded feature vectors

t=1    t=2   …       …      …     
t=N

Image source: https://wiki.aalto.fi/pages/viewpage.action?pageId=149883153

https://wiki.aalto.fi/pages/viewpage.action?pageId=149883153


Audio Tokenization
 The centroid vectors 
in the space are called 
Codewords! 

 Together they create 
an indexable 
Codebook!

Encoder Decoder

Sampled audio Reconstructed audio

0.1
-0.3
0.4
…

-0.1

0.2
-0.4
0.8
…

-0.9

-0.4
-0.1
-0.6
…
0.5
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-0.5
0.9
…
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0.4
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…

Encoded feature vectors

t=1    t=2   …       …      …     
t=N
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9
…
…
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…
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Embedding lookup table (Codebook)

  i=9  i=13  i=15    …     …       
…

Image source: https://wiki.aalto.fi/pages/viewpage.action?pageId=149883153

https://wiki.aalto.fi/pages/viewpage.action?pageId=149883153


Audio Tokenization
 The centroid vectors 
in the space are called 
Codewords! 

 Together they create 
an indexable 
Codebook!

Encoder Decoder

Sampled audio Reconstructed audio

0
1
2
…
...
9
…
…
14
15

…
…

Embedding lookup table (Codebook)

[9, 13, 15, 4, 7, 13, 12, ..., 14, 15]

t=1 t=2  …  …  …  …  …  …  …  
t=NSequence of codeword indices!

(discrete & highly compressed)
Image source: https://wiki.aalto.fi/pages/viewpage.action?pageId=149883153

https://wiki.aalto.fi/pages/viewpage.action?pageId=149883153


Audio Tokenization

 The decoder can simply look up 
each centroid (codeword) 
vector by its index as a good 
approximation of the original 
input vector that it represents.

Decoder

Reconstructed audio

0
1
2
…
...
9
…
…
14
15

…
…

Embedding lookup table (Codebook)

[9, 13, 15, 4, ..., 15]

 Text NLP Analogies:
◦ Codeword Index: 

Token Id!

◦ Codeword:           
Token embedding!

◦ Codebook:           
Token embedding 
matrix! (lookup table)

0.3
-0.6
0.9
…
0.3

-0.3
0.5
-0.4
…

-0.6

Image source: https://wiki.aalto.fi/pages/viewpage.action?pageId=149883153

https://wiki.aalto.fi/pages/viewpage.action?pageId=149883153


Audio Tokenization
 However - the reconstruction will be lossy:

 Enter: Residual Vector Quantization (RVQ):

Reconstructed audio

[... 23, 4, ..., 15]

0.3
-0.6
0.9
…
0.3

-0.3
0.5
-0.4
…

-0.6

Approximations of 
original encoding 
vectors!

... Decoder

Sampled audio

0.2
-0.5
0.9
…
0.3

-0.2
0.6
-0.4
…

-0.6

...

Map Lookup

Encoder

0.2
-0.5
0.9
…
0.3

0.3
-0.6
0.9
…
0.3

-

Original Appx.

=

-0.1
0.1
0.0
…
0.0

Residual Vector
(reconstruction error)



Audio Tokenization
 However - the reconstruction will be lossy:

 Enter: Residual Vector Quantization (RVQ):

Reconstructed audio

[... 23, 4, ..., 15]

0.3
-0.6
0.9
…
0.3

-0.3
0.5
-0.4
…

-0.6

... Decoder

Sampled audio

0.2
-0.5
0.9
…
0.3

-0.2
0.6
-0.4
…

-0.6

...

Map Lookup

Encoder

-0.1
0.1
0.0
…
0.0

Residual Vectors
(reconstruction errors)

0.1
0.1
0.0
…
0.0

... [... 8, 14, ..., 92]

Map Lookup

Using separate codebook!

-0.2
0.0
0.0
…
0.0

0.0
0.2
-0.1
…
0.0

...

Approximations of 
original residual vectors!

+ +

Summed with first level 
approximations to “correct” 
the reconstruction error!



Audio Tokenization
 However - the reconstruction will be lossy:

 But… won’t the residual approximations have their own reconstruction error?

Reconstructed audio

[... 23, 4, ..., 15]

0.3
-0.6
0.9
…
0.3

-0.3
0.5
-0.4
…

-0.6

... Decoder

Sampled audio

0.2
-0.5
0.9
…
0.3

-0.2
0.6
-0.4
…

-0.6

...

Map Lookup

Encoder

-0.1
0.1
0.0
…
0.0

Residual Vectors
(reconstruction errors)

0.1
0.1
0.0
…
0.0

... [... 8, 14, ..., 92]

Map Lookup

Using separate codebook!

-0.2
0.0
0.0
…
0.0

0.0
0.2
-0.1
…
0.0

...

Approximations of 
original residual vectors!

+ +

Summed with first level 
approximations to “correct” 
the reconstruction error!

No problem!



Audio Tokenization
 However - the reconstruction will be lossy:

Reconstructed audio

[... 23, 4, ..., 15]

0.3
-0.6
0.9
…
0.3

-0.3
0.5
-0.4
…

-0.6

... Decoder

Sampled audio

0.2
-0.5
0.9
…
0.3

-0.2
0.6
-0.4
…

-0.6

...

Map Lookup

Encoder

-0.1
0.1
0.0
…
0.0

Secondary Residual 
Vectors

0.1
0.1
0.0
…
0.0

... [... 8, 14, ..., 92]

Map Lookup

Using separate codebook!

-0.2
0.0
0.0
…
0.0

0.0
0.2
-0.1
…
0.0

...

Approximations of 
secondary residual vectors!

+ +

-0.1
0.1
0.0
…
0.0

0.1
0.1
0.0
…
0.0

... [... 62, 1, ..., 73]

Map Lookup

Using separate codebook!

-0.2
0.0
0.0
…
0.0

0.0
0.2
-0.1
…
0.0

...

+ +
All levels summed together 
to get a better “correction” 
of the reconstruction error!

Multi-level RVQ!



Audio Tokenization
 This process can be repeated N times to get progressively better reconstruction:

Reconstructed audio

[... 23, 4, ..., 15]

0.3
-0.6
0.9
…
0.3

-0.3
0.5
-0.4
…

-0.6

... Decoder

Sampled audio

0.2
-0.5
0.9
…
0.3

-0.2
0.6
-0.4
…

-0.6

...

Map Lookup

Encoder

N-th level Residual Vectors Approximations of N-th 
level residual vectors!

+ +

-0.1
0.1
0.0
…
0.0

0.1
0.1
0.0
…
0.0

... [... 62, 1, ..., 73]

-0.2
0.0
0.0
…
0.0

0.0
0.2
-0.1
…
0.0

...

+ +

Multi-level RVQ!

[... 8, 14, ..., 92]

[... 40, 2, ..., 19]

[... 67, 14, ..., 3]

... ... ...

... ... ...

... ... ...

... ... ...

Using N separate codebooks!



Audio Tokenization
 We now have powerful, general Neural Audio Codecs for discrete representation of audio!

EnCodec (Defossez et al., 2022)

SoundStream (Zeghidour et al., 2021) 

FunCodec (Du et al., 2023)

And several others!

https://arxiv.org/pdf/2210.13438
https://arxiv.org/abs/2107.03312
https://arxiv.org/abs/2309.07405


By the way:
 Vector Quantization is not just for audio: it can be used anywhere there is a vector space!

◦ E.g., VQ-VAE (Van Den Oord et al., 2017) uses VQ to construct a discrete image embedding space
◦ Here, the codebook is learned by gradient descent jointly with the rest of the model.

◦ This goes on to be a major component in DALL·E!
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Audio Language Modeling
 Now that we can tokenize audio 
into a discrete “vocabulary”:

 Proceed exactly as we do with 
text language modeling!

 Yes, the concept is that simple.

Audio 
Continuation



Audio Language Modeling
 Yes, the concept is that simple…

 … but there arise some practical 
challenges:
1. Increased sequence length

Audio 
Continuation



Audio Language Modeling
 Yes, the concept is that simple…

 … but there arise some practical 
challenges:
1. Increased sequence length

2. Dealing with the multi-level RVQ
� Predict multiple tokens per timestep?

• Non-standard implementation incompatible 
with LLM ecosystem

• Poor compatibility with existing sampling 
methods*

• Lose causal bias between levels

� Flatten the codebook and stretch each timestep 
into N (e.g., 4 for a 4-level RVQ)?

• Exacerbates issue #1

• Slower inference

• Slower to train

• Requires more GPU memory

Audio 
Continuation

4-level Residual 
Vector 
Quantizer



Audio Language Modeling
 Yes, the concept is that simple…

 … but there arise some practical 
challenges:
1. Increased sequence length

2. Dealing with the multi-level RVQ

These methods are formalized into 
common “codebook interleaving 
patterns” (Copet et al., 2023)

All of these patterns can be used 
successfully with varying results. The 
“Delay” pattern is popular in very recent 
work (MusicGen, VoiceCraft, Parler-TTS).



Audio Language Modeling

Early examples of Audio Language Models… (2021 – early 2023)



Audio Language Modeling
 Proposed by Lakhotia et al. (2021) in 
“On Generative Spoken Language 
Modeling from Raw Audio” (TACL)

Unit = “Codeword”
S2u = “Speech-to-Unit”
uLM = “Unit Language Model”
u2S = “Unit-to-Speech”

https://arxiv.org/abs/2102.01192


Audio Language Modeling
 Proposed by Lakhotia et al. (2021) in 
“On Generative Spoken Language 
Modeling from Raw Audio” (TACL)

Standard decoder-only LLM (e.g. 
GPT-3, etc.)

Layers: 12
Attn Heads: 16
d_model: 1024

d_ffn: 4096
Context size: 3072

Unit = “Codeword”
S2u = “Speech-to-Unit”
uLM = “Unit Language Model”
u2S = “Unit-to-Speech”

https://arxiv.org/abs/2102.01192


Audio Language Modeling
 Proposed by Lakhotia et al. (2021) in 
“On Generative Spoken Language 
Modeling from Raw Audio” (TACL)

Modified
Tacotron2
(Shen et al., 2018)

Codewords!

WaveGlow 
Vocoder (Prenger 
et al., 2019)

Unit = “Codeword”
S2u = “Speech-to-Unit”
uLM = “Unit Language Model”
u2S = “Unit-to-Speech”

https://arxiv.org/abs/2102.01192


Audio Language Modeling

 Let’s listen - https://speechbot.github.io/gslm/

https://speechbot.github.io/gslm/


Audio Language Modeling

 AudioLM (Borsos et al., 2022)

Image sources: https://ai.googleblog.com/2022/10/audiolm-language-modeling-approach-to.html

Stage 1: Semantic Modeling

Decoder-only 
Autoregressive Generation

https://arxiv.org/abs/2209.03143
https://ai.googleblog.com/2022/10/audiolm-language-modeling-approach-to.html


Audio Language Modeling

 AudioLM (Borsos et al., 2022)

Image sources: https://ai.googleblog.com/2022/10/audiolm-language-modeling-approach-to.html

Stage 1: Semantic Modeling
Stage 2: Coarse Acoustic Modeling

Decoder-only 
Autoregressive Generation

https://arxiv.org/abs/2209.03143
https://ai.googleblog.com/2022/10/audiolm-language-modeling-approach-to.html


Audio Language Modeling

 AudioLM (Borsos et al., 2022)

Image sources: https://ai.googleblog.com/2022/10/audiolm-language-modeling-approach-to.html

Stage 1: Semantic Modeling
Stage 2: Coarse Acoustic Modeling
Stage 3: Fine Acoustic Modeling

Decoder-only 
Autoregressive Generation

https://arxiv.org/abs/2209.03143
https://ai.googleblog.com/2022/10/audiolm-language-modeling-approach-to.html


Audio Language Modeling
 AudioLM is a significant step in this direction – textless, audio-only language generation!

 AudioLM is a general framework that applies autoregressive language generation principals to 
any type of audio:

◦ Speech, Music, including background recording conditions

https://google-research.github.io/seanet/audiolm/examples/

https://google-research.github.io/seanet/audiolm/examples/


Audio Language Modeling
 Modeling raw speech audio is hard – it requires learning the semantics and pragmatics of 
language from audio.

 For example:
◦ Learning what words and sentences mean in context

◦ Predicting the underlying intent of the speaker

◦ Remaining coherent beyond a few words at a time

Text LLMs are VERY good at this... 

If we condition audio generation on text, the language modeling problem reduces to a much easier 
translation problem…



Audio Language Modeling

 VALL-E’s prompt contains:

1. Text Portion
1. Phoneme tokens representing 

~3 seconds of sample speech 
from the desired speaker

2. Phoneme tokens to be 
synthesized

2. Acoustic Portion
1. Acoustic tokens (EnCodec codes) 

for the ~3 seconds of sample 
speech

 VALL-E is a Decoder-only Transformer LM that 
predicts the discrete codes from a pre-trained neural 
audio codec (EnCodec; Defossez et al., 2022)

https://www.microsoft.com/en-us/researc
h/project/vall-e-x/vall-e/

https://arxiv.org/pdf/2301.02111
https://arxiv.org/pdf/2210.13438.pdf
https://www.microsoft.com/en-us/research/project/vall-e-x/vall-e/
https://www.microsoft.com/en-us/research/project/vall-e-x/vall-e/
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Application: ASR, TTS, S2S Tasks
 Automatic Speech 
Recognition (ASR) 

 OpenAI’s Whisper is a very 
well-known state-of-the-art 
ASR model.

 This is NOT an audio language 
model, but rather a text LM 
with cross-attention to a 
Log-Mel Spectrogram encoder:

 Although not an audio LM, It is 
very powerful and easy to use 
so worth a mention here!



Application: ASR, TTS, S2S Tasks
 Automatic Speech Recognition (ASR) - Ok, back to Audio Language Models. 

 ASR in an audio LM can be defined as:

The quick brown fox jumped 
over…

“the quick 
brown fox 
jumped 
over…”

Speech codec tokens in…🡪

🡪 Text transcription out!

Text+



Application: ASR, TTS, S2S Tasks

Text 
in…🡪

🡪 Speech codec tokens out!

Text+

 Text-To-Speech (TTS) 

 TTS in an audio LM can be defined as the opposite:

 (e.g., we already looked at Vall-E)



Application: ASR, TTS, S2S Tasks

Text 
in…🡪

🡪 Speech codec tokens out!

Text+

 Text-To-Speech (TTS) 

 TTS models like Vall-E that accept an audio speaker sample along with the text are sometimes 
called “Voice Cloning” models.



Application: ASR, TTS, S2S Tasks

Speech codec tokens in…🡪

🡪 Speech codec tokens out!

 Speech-to-Speech (S2S) 

 S2S in an audio LM can be defined as:



Application: ASR, TTS, S2S Tasks

Speech codec tokens in…🡪

 Speech-to-Speech (S2S) 

 Multimodal S2S models can interleave audio and text (or audio semantic tokens) to do the core 
NLP processing in the text domain before translating back to audio:

🡪 Speech codec tokens out!

Intermediate text 
or semantic 

tokens

+Text+



Application: ASR, TTS, S2S Tasks

Speech codec tokens in…🡪

 Speech-to-Speech (S2S) 

 Common S2S tasks include Chat, Q&A, Machine Translation, and Voice Style Transfer.

🡪 Speech codec tokens out!

+Text+

Intermediate text 
or semantic 

tokens



Application: ASR, TTS, S2S Tasks

Recent examples of Multi-task Audio LMs for ASR, TTS, and S2S

(2023-2024)



Application: ASR, TTS, S2S Tasks
 VioLA: Unified Codec 
Language Models for 
Speech Recognition, 
Synthesis, and Translation

 (Wang et al., 2023)

 Microsoft

 Details:
◦ Architecture: Transformer 

decoder + LSTM

◦ Codec: EnCodec

◦ RVQ Handling: Flatten 
pattern (8 codebooks)

◦ Demo: Unavailable



Application: ASR, TTS, S2S Tasks
 LauraGPT: Listen, Attend, 
Understand, and Regenerate 
Audio with GPT

 (Wang et al., 2023)

 Alibaba

 Details:
◦ Architecture: Transformer 

decoder 

◦ Codec: FunCodec + Vocoder 

◦ RVQ Handling: N/A – only 
one codebook used

◦ Demo: 
https://lauragpt.github.io/

https://lauragpt.github.io/


Application: ASR, TTS, S2S Tasks
 SpiRit-LM: Interleaved Spoken 
and Written Language Model

 (Nguyen et al., 2024)

 Meta, Inria Paris, EHESS, ENS-PSL, 
CNRS Paris

 Details:
◦ Architecture: Transformer decoder 

◦ Codec: HuBERT Encoder, k-means 
quantizer, HifiGAN Decoder

◦ RVQ Handling: N/A – no RVQ

◦ Demo: 
https://speechbot.github.io/spiritl
m/

https://speechbot.github.io/spiritlm/
https://speechbot.github.io/spiritlm/


Application: ASR, TTS, S2S Tasks
 VoiceCraft: Zero-Shot Speech 
Editing and Text-to-Speech in 
the Wild

 (Peng et al., 2024)

 University of Texas at Austin, 
Rembrand

 Details:
◦ Architecture: Transformer 

decoder 
◦ Codec: EnCodec
◦ RVQ Handling: Delay pattern 

(4 codebooks)
◦ Demo: 

https://jasonppy.github.io/Voi
ceCraft_web/

https://jasonppy.github.io/VoiceCraft_web/
https://jasonppy.github.io/VoiceCraft_web/


Application: ASR, TTS, S2S Tasks
 Natural language guidance of 
high-fidelity text-to-speech with 
synthetic

 (Lyth & King, 2024)

 Stability AI, University of 
Edinburgh, UK

 Details:
◦ Architecture: Transformer decoder 

with cross-attention to T5 text 
encodings 

◦ Codec: DAC (Kumar et al., 2024)
◦ RVQ Handling: Delay pattern           

(9 codebooks)
◦ Demo: 

https://www.text-description-to-sp
eech.com/

◦ Open-source reproduction:       
“Parler-TTS” by HuggingFace: 
https://github.com/huggingface/pa
rler-tts

Vocal properties are controllable via a 
separate speaker description prompt

https://www.text-description-to-speech.com/
https://www.text-description-to-speech.com/
https://github.com/huggingface/parler-tts
https://github.com/huggingface/parler-tts


Application: ASR, TTS, S2S Tasks
 Additional Resources:

 Other recent ASR / TTS / S2S work from Meta, some of which uses Codecs:

 https://ai.meta.com/blog/multilingual-model-speech-recognition/

 https://ai.meta.com/blog/seamless-m4t/

 https://ai.meta.com/blog/seamless-communication/

 An EnCodec-based TTS audio LM from Suno AI:

 https://github.com/suno-ai/bark

https://ai.meta.com/blog/multilingual-model-speech-recognition/
https://ai.meta.com/blog/seamless-m4t/
https://ai.meta.com/blog/seamless-communication/
https://github.com/suno-ai/bark
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Application: Sound & Music Generation

Text guidance in…🡪

 Text-Guided Audio Generation

 Unlike TTS & S2S, the text prompt does not serve as a translation target but as loose guidance. 
This is akin to text-guided image generation with Stable Diffusion, Midjourney, etc.

� Audio codec tokens out!
• Music
• Sound effects

Text+

Text Guidance 
Prompt

(Optional) Acoustic style prompt

“Relaxing sound of 
waves crashing 
against the shore…”



Application: Sound & Music Generation
 AudioGen: Textually Guided Audio 
Generation

 (Kreuk et al., 2023)

 Meta AI, Hebrew University of Jerusalem

 Details:
◦ Architecture: Transformer decoder with 

cross-attention to T5 text encodings 
◦ Codec: Custom RVQ-based
◦ RVQ Handling: Parallel pattern            (4 

codebooks)
◦ Demos: 

https://felixkreuk.github.io/audiogen/
◦ https://audiocraft.metademolab.com/au

diogen.html
◦ Meta Resources: 

https://audiocraft.metademolab.com/

https://felixkreuk.github.io/audiogen/
https://audiocraft.metademolab.com/audiogen.html
https://audiocraft.metademolab.com/audiogen.html
https://audiocraft.metademolab.com/


Application: Sound & Music Generation
 Simple and Controllable Music 
Generation

 (Copet et al., 2023)

 Meta AI

 Details:
◦ Architecture: Transformer decoder 
◦ Codec: EnCodec
◦ RVQ Handling: Delay pattern                

(4 codebooks)
◦ Demos: 

https://ai.honu.io/papers/musicgen/
◦ https://audiocraft.metademolab.com

/musicgen.html
◦ Meta Resources: 

https://audiocraft.metademolab.com/

https://ai.honu.io/papers/musicgen/
https://audiocraft.metademolab.com/musicgen.html
https://audiocraft.metademolab.com/musicgen.html
https://audiocraft.metademolab.com/


Application: Sound & Music Generation
 Additional Resources:

 Suno AI’s “Chirp” product provides an end-to-end music generation capability including:
◦ Lyric generation

◦ Music generation

◦ Vocal generation adhering to the lyrics (a type of styled TTS)

◦ Putting it all together

No paper is released, but if they use a similar architecture to Suno Bark, it might be an EnCodec-based 
Audio LM.

https://suno.com/
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Application: Full-Duplex Dialogue 
Agents
 LLM chatbots are usually text-based. However, speech communication is richer than text:

◦ Vocal inflections

◦ Non-linguistic acts (e.g., laughter, backchannels - “mhmm”, fillers – “umm”)

◦ Non-verbal cues     (e.g., hand gestures, head nods, eye contact)

◦ Timing                      (e.g., pauses, gaps, overlaps)

◦ Prosody                    (e.g., pitch, rate, intensity)

&=laughs it was so 
good, you know? ↗

It had (0.4) uhh (1.1) it 
had strawberry icing… 

Yeah! (0.2) Mhm
� CHAT-CA annotations
     (MacWhinney, 2019)

https://talkbank.org/manuals/CHAT.html


Application: Full-Duplex Dialogue 
Agents

� You can stick a text LLM in one of these things.



Application: Full-Duplex Dialogue 
Agents

This would be an ASR->LLM->TTS system, a.k.a a cascaded model:

Automatic Speech 
Recognition (ASR)

LLM Chatbot 
(e.g., ChatGPT)

Text-to-Speech (TTS)

These models fail to produce 
fluid, lifelike interaction!

Why?
• Rigid, half-duplex turn-taking
• No modeling of prosodic & 

paralinguistic features



Application: Full-Duplex Dialogue 
Agents
 Natural human conversations contain:

◦ Positive & Negative floor transfer 
offsets (gaps + overlaps)

◦ Filled Pauses (umm, you know…)
◦ Backchannels (mhm, right, yeah)
◦ Prosodic clues toward intention & 

emotion
◦ Intensity, speed, word emphasis, tone, drawn 

out syllables, etc.

◦ Paralinguistic speech
◦ Laughter, sighing, grunting, squealing, 

humming, singing, etc.

◦ Choral speech (speaking in chorus)
◦ Turn-taking & turn-yielding cues

◦ Rising / falling pitch

◦ Pause length

◦ Semantic cues

Cascaded SDS do none of 
these well (if at all!)

Skantze, 2021: Turn-taking in conversational 
systems and human-robot interaction: a review.



Application: Full-Duplex Dialogue 
Agents

To illustrate, let’s compare ChatGPT’s voice chat to real 
human phone calls:
https://www.youtube.com/watch?v=RcgV2u9Kxh0

https://sla.talkbank.org/TBB/ca/CallFriend/eng-n/6062.cha
https://sla.talkbank.org/TBB/ca/CallFriend/eng-n/4708.cha

Cascaded, half-duplex SDS do 
none of these well (if at all!)

Imagine speaking to Amazon 
Alexa or Google Assistant.

https://www.youtube.com/watch?v=RcgV2u9Kxh0
https://sla.talkbank.org/TBB/ca/CallFriend/eng-n/6062.cha
https://sla.talkbank.org/TBB/ca/CallFriend/eng-n/4708.cha


Application: Full-Duplex Dialogue 
Agents
 Even if cascaded models could model all of those 
phenomena, they still suffer from two inescapable issues:

 1. Cascading errors:

 2. High latency:

Automatic Speech 
Recognition (ASR)

LLM Chatbot

Text-to-Speech (TTS)

What’s 
going on?

Watch 
going on?

Is that a 
show?

600ms

200ms

800ms

(Levinson & Torreira, 2015)



Application: Full-Duplex Dialogue 
Agents
 One early attempt to create a full-duplex dialogue system with continuous turn-taking and pause 
prediction: Google Duplex (Leviathan & Matias, 2018)

Source: https://ai.googleblog.com/2018/05/duplex-ai-system-for-natural-conversation.html

Demo (@ google I/O 2018):

https://www.youtube.com/watc
h?v=D5VN56jQMWM&t=40s

https://ai.googleblog.com/2018/05/duplex-ai-system-for-natural-conversation.html
https://www.youtube.com/watch?v=D5VN56jQMWM&t=40s
https://www.youtube.com/watch?v=D5VN56jQMWM&t=40s


Application: Full-Duplex Dialogue 
Agents
 Google Duplex was impressive, but no paper was released. As a 2018 work, it was likely very specialized and 
domain-restricted (i.e. could not handle general conversation)

 So, why not use a S2S audio language model to achieve a generalized full-duplex experience?

 Unlike the other S2S approaches we looked at, dGSLM does not use intermediate text or semantic tokens and 
cannot reduce the audio language modeling problem to modal translation!

 The lack of semantic conditioning makes this a much harder problem.

Codec Audio LM

� This is what dGSLM does! 
Let’s listen: 
https://speechbot.github.io
/dgslm/

https://speechbot.github.io/dgslm/
https://speechbot.github.io/dgslm/


Application: Full-Duplex Dialogue 
Agents
 dGSLM (or just “DLM”) is GSLM for Dialogue:

Two concurrent channels 
(one per speaker)

Dual-tower LLM 

HuBERT encoder
K-means quantizer 
(codewords)

HifiGAN instead of 
Tacotron2+WaveGlow

Similar to AudioGen!

https://arxiv.org/pdf/2203.16502


Application: Full-Duplex Dialogue 
Agents



Application: Full-Duplex Dialogue 
Agents

◦ What is next? Can we solve dGSLM’s coherence issue and get something up and running for the 
open-source AI community?

◦ Perhaps just scale it up and train on more data?

◦ Perhaps align its embedding space with text LLMs that are already very coherent?

◦ Perhaps use intermediate text / semantic tokens?

◦ This is the topic of my PhD thesis!
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Discussion
 Want to get your hands dirty?

 Many of the paper, model, and demo links throughout this presentation have open-source 
implementations on GitHub.

 Many are also on HuggingFace, including:

 https://huggingface.co/openai/whisper-large-v3 (ASR)

 https://huggingface.co/suno/bark (TTS)

 https://huggingface.co/parler-tts/parler_tts_mini_v0.1 (TTS)

 https://huggingface.co/facebook/audiogen-medium (Sound effect generation)

 https://huggingface.co/facebook/musicgen-large (Music generation)

 And many others too!

https://huggingface.co/openai/whisper-large-v3
https://huggingface.co/suno/bark
https://huggingface.co/parler-tts/parler_tts_mini_v0.1
https://huggingface.co/facebook/audiogen-medium
https://huggingface.co/facebook/musicgen-large


Thank You!


