LLMs for Audio Applications

FOCI GENAI/LLM USERS GROUP EPISODE #6
MAY 1°7 2024

Agenda
nwoducion |3

Background: Language Modeling

Audio Tokenization

Audio Language Modeling

Application: ASR, TTS, S2S Tasks
Application: Sound & Music Generation
Application: Full-Duplex Dialogue Agents

Discussion

Introduction

Natural language is first acquired in the audio
modality beginning in infancy.

Children are typically fluent communicators
years before they read or write their first word
of text.

Can Large Language Models (LLMs) learn to
model language without text?

cCan LLMs directly understand and
generate audio?

Introduction

Audio enables more natural human-computer interaction by interacting through speech. Applications
include:

o Digital Assistants (e.g., Alexa)

> Accessibility Aids

o Customer Service Automation

° Transcription & Translation

° More engaging chat agents

o Smart NPCs for video games & immersive worlds

Immersive SDS for NPC concept:
https://www.youtube.com/watch?v=FzSI1J7d3It0

https://www.youtube.com/watch?v=FzSIJ7d3lt0

Agenda

Introduction

Background: Language Modeling

Audio Tokenization

Audio Language Modeling

Application: ASR, TTS, S2S Tasks
Application: Sound & Music Generation
Application: Full-Duplex Dialogue Agents

Discussion

Background: Language Modeling

In text generation, we feed tokens in and
predict the next ones autoregressively.

(e.g., GPT 2-4, Llama 1-3, Mixtral, etc.)

Input text is first preprocessed by
tokenization into words or subwords:

”Lorem ipsum dolor sit amet”

n - n ”n . n

["Lo”, "rem”,” _ip”, "sum”,” _dolor

\ 4

[5643, 6568, 332, 2224, 99, 129, 22931, 2321]

n . n»n

_a,

”n . n e n

7 sit”, met”]

rem _ip sum _dolor
[Linear + Softmax]
[Representat.] [Representat.] Representat. [Representat.]
w/ attention w/ attention w/ attention w/ attention w/ attention
ranslfy
) () () (3
embedding embedding embedding embedding embedding
+ + + + +
[Positional] [Positional] [Positional] [Positional]
encoding encoding encoding encoding encoding
Lo rem _ip sum _dolor

Background: Language Modeling

Input text is first preprocessed by
tokenization into words or subwords:

”Lorem ipsum dolor sit amet”

\ 4

Ilsum”’ Il_dolor”’ ”_Sit”’

\ 4

[5643, 6568, 332, 2224, 99, 129, 22931, 2321]

[II LOII’ ” rem”’ Il_ip"’ Il_all’ Hmet”]

rem (6568)

[

Linear + Softmax

]

t

f

t

L)

[

Representat.
w/ attention

J

Representat.
w/ attention

J

Representat.] [
w/ attention

Representat.
w/ attention

Representat.
w/ attention

L}

1

L)

L}

)

/

Embedding lookup table
0 -~ —
1
2
Lol N O A A
~50K -

(¥

ra nslf(y

2N

)

1

L]

L)

L]

L)

embedding

+

[

Token] [Token] [Token] [Token
embedding embedding embedding embedding
Positional] [Positional] [Positional] [Positional
encoding encoding encoding encoding

encoding

. Lo (5643) rem (6568)

Agenda

Introduction

Background: Language Modeling

Audio Tokenization

Audio Language Modeling

Application: ASR, TTS, S2S Tasks
Application: Sound & Music Generation
Application: Full-Duplex Dialogue Agents

Discussion

Audio Tokenization

The immediate question:

When building an audio language model, what are the tokens?
o “Acoustic Tokens” need to represent units of sound rather than units of language.

For this, we turn to the Audio Codec (e.g., MP3, AAC, FLAC, WAV, etc...):

These can be

our Tokens!
General
Audio - Encoder [2,52,35,1] Decoder -
Codec

Discrete digital signal
(highly compressed)

Reconstructed audio

Sampled audio

Audio Tokenization

The immediate question:

When building an audio language model, what are the tokens?
o “Acoustic Tokens” need to represent units of sound rather than units of language.

For 44.1 kHz sampling rate:
MP3, AAC: 96-320 Kbps

For this, we turn to the Audio Codec ; ; > - - Neural Audio Codec: 1 5.24
Kbp§H!
These can be N
our Tokens!
General
Audio - Encoder [2,52,35,1] Decoder -
Codec

Discrete digital signal
(highly compressed)

Reconstructed audio

Sampled audio

Audio Tokenization

A neural audio codec uses a neural encoder to encode a sequence of continuous vector
representations of the sampled audio over time, usually at a much lower frequency:

o E.g., raw audio sampled at 24kHz, vectors produced at 75Hz
o But.... this is even more information than the raw audio waveform!

Enter: Vector Quantization!

0.1 0.2 -0.4 0.3 -0.3
-0.3 -0.4 -0.1 -0.5 0.4

- Encoder 0.4 0.8 06 | mmm| 09 0.4 Decoder -

-0.1 -0.9 0.5 0.2 -0.7

Sampled audio

t=1 t=2

" Encoded feature vectors

Reconstructed audio

Audio Tokenization

Vector Quantization (VQ) quantizes (discretizes)
continuous vectors by mapping each of them to the
centroids of their respective Voronoi regions in the space.

It’s basically just k-means!*

*K-means usually refers to Lloyd’s algorithm, but that is just one of many ways to
construct this cluster space. Others include Kohonen’s SOM and VQ-VAE.

0.1 0.2 -0.4 0.3 -0.3
-0.3 -0.4 -0.1 -0.5 0.4
- Encoder 0.4 0.8 06 | mmm| 09 0.4 Decoder -
01 || -09 05 02 07
| t=1 t=2
Sampled audio t=N Reconstructed audio

Encoded feature vectors
Image source: https://wiki.aalto.fi/pages/viewpage.action?pageld=149883153

https://wiki.aalto.fi/pages/viewpage.action?pageId=149883153

Audio Tokenization

. Embedding lookup table (Codebook
The centroid vectors mbedding Jookup table (Codeboold
in the space are called !
Codewords!
9 I) O A O
Together they create
an indexable 14
Codebook! w
i=9 =13 i=15
"t 01 0.2 -0.4 0.3 -0.3
-0.3 -0.4 -0.1 -0.5 0.4
- Encoder 0.4 08 06 | mmm| 09 0.4 Decoder -
o1 || os || o5 0z || o7
t=1 t=2
Sampled audio t=N

Encoded feature vectors

https://wiki.aalto.fi/pages/viewpage.action?pageId=149883153

Audio Tokenization

Embedding lookup table (Codebook)

The centroid vectors
in the space are called
Codewords!

o

Nl

Together they create .
an indexable 14
Codebook! w

- Encoder [9, 13, 15,4, 7,13, 12, ..., 14, 15] Decoder -

t=1t=2

1-S_e|\<|quence of codeword indices!
(discrete & highly compressed)

Sampled audio

Image source: https:

https://wiki.aalto.fi/pages/viewpage.action?pageId=149883153

Audio Tokenization

Embedding lookup table (Codebook)

Text NLP Analogies:
o Codeword Index:

[ERN

Token Id!

> Codeword: B))
Token embedding! . -

o Codebook: T

Token embedding
matrix! (lookup table)

The decoder can simply look up

v
each centroid (codeword) 03 | | 03
vector by its index as a good [9, 13, 15, 4, ..., 15] 05 | | oa Decoder -
approximation of the original 03 || -06
input vector that it represents.

Image source: https:

https://wiki.aalto.fi/pages/viewpage.action?pageId=149883153

Audio Tokenization

However - the reconstruction will be lossy:

Map Lookup
0.2 -0.2 // o 0.3 -0.3
-0.5 0.6 / S -0.6 0.5
Encoder 09 | ...| 04 [... 23, 4, ..., 15] 09 |...| 04 Decoder

‘i‘ 03 —6.6 0.3 -0.6 |
| \/ |
Sampled audio Approximations of Reconstructed audio
original encoding
vectors!
0.2 0.3 -0.1
. . . 0.5 06 0.1 Residual Vector
Enter: Residual Vector Quantization (RVQ): 00 | |09l = 00l onstruction error)
0.3 0.3 0.0

Original Appx.

Audio Tokenization

However - the reconstruction will be lossy:

Sampled audio

- Encoder

~

.

Residual Vectors
(reconstruction errors)

0.2

-0.5

0.9
0.3

:

-0.1

0.1
0.0

0.0

N

J

N

J

-0.2

0.6

-0.4

-0.6

v

0.1
0.1
0.0

0.0

Map

4
4

1...23,4, ..

Map

/
/

1...8,14, ..

Using separate

Enter: Residual Vector Quantization (RVQ):

Lookup

N

., 15] "~

Lookup

N

L, 92]

codebook!

&

-0.6

-0.2

0.3

0.9

P+

N

0.0
0.0

0.0
J

&

Approximations of
original residual vectors!

Decoder -

. Reconstructed audio

Summed with first level
approximations to “correct”
the reconstruction error!

Audio Tokenization

However - the reconstruction will be lossy:

Map

Lookup -

CY N
0.2 -0.2 // o 0.3 -0.3
-0.5 0.6 ’ S -0.6 0.5
Encoder 09 04 [...23,4,...,15] ~—| os 04 Decoder
03 06 03 06
\\ J ~ J \\ J
¢ i T + T + S
R Map Lookup - N R b
. -0.1 0.1 / Sl -0.2 0.0 S N
Sampled audio 01 01 / ~ | oo 0.2 N Reconstructed audio
00 00 [... 8,14, ...,,92] ~—= oo 01 s
L%) 00 Using separate codebook! | ®° | | %0 IR

Summed with first level
approximations to “correct”
the reconstruction error!

Residual Vectors
(reconstruction errors)

Approximations of
original residual vectors!

But... won'’t the residual approximations have their own reconstruction error? No problem!

Audio Tokenization

However - the reconstruction will be lossy:

Sampled audio

Multi-level RvQ!

- Encoder

.

0.2

-0.5

0.9

0.3

-0.1

0.1
0.0

0.0

-0.1

0.1
0.0

0.0

J

-0.2

0.6

-0.4

-0.6

0.1
0.1
0.0

Map Lookup

4 N
4

1..23,4 ... 15]

Map Lookup

4 S
/

1.8, 14, ..., 92]

Using separate codebook!

Map Lookup

4 S
/

- [..62,1, ..., 73]

J

Using separate codebook!

Secondary Residual
Vectors

.

0.3

-0.6

0.9

0.3

0.0
0.0

0.0

-0.2

0.0
0.0

0.0

J

J

.

Decoder -

\ Reconstructed audio

. Alllevels summed together
to get a better “correction”
of the reconstruction error!

Approximations of

secondary residual vectors!

Audio Tokenization

This process can be repeated N times to get progressively better reconstruction:

Map Lookup

0.2 -0.2 // \\ 0.3 -0.3

-0.5 0.6 / S -0.6 0.5

- Encoder 09 |...| 04 [... 23,4, ..., 15] 09 |...| -0a Decoder -

03 06 . . . 03 06

' ' + +
[...8,14, ..., 92] T T |

Sampled audio SN [... 40,2, ..., 19] SR Reconstructed audio

[... 67,14, ..., 3]

' ' SR [+ [+

-0.1 0.1 ’) : -0.2 0.0
Multi-level RvQ! oo || & [..62,1, .., 73] — 00 || o1
00 09 Using N separate codebooks! 00 00

N-th level Residual Vectors Approximations of N-th

level residual vectors!

Audio Tokenization

We now have powerful, general Neural Audio Codecs for discrete representation of audio!

el !
EnCodec (Defossez et al., 2022) ‘ N I; B And several others!
ﬁzl Decoder

FunCodec (Du et al., 2023)
| EJe)Ry ¢ —

E”code
>

SoundStream (Zeghidour et al., 2021) -

Ng 4

Training

Speech

1
‘
Decod
mrmnj o |Pecoder '
3 : -
''''' - ‘I -
Domain Semantic Tokens Domain

Tranformation (Optional) Inversion

https://arxiv.org/pdf/2210.13438
https://arxiv.org/abs/2107.03312
https://arxiv.org/abs/2309.07405

By the way:

Vector Quantization is not just for audio: it can be used anywhere there is a vector space!
> E.g., VQ-VAE (Van Den Oord et al., 2017) uses VQ to construct a discrete image embedding space

o Here, the codebook is learned by gradient descent jointly with the rest of the model.

o This goes on to be a major component in DALL-E!

Embedding

I
Space |
e @
— l B
F R : @i @
*a D " Z.(X)
] 171 . | Q
L @ Vg ®
I 7 : z,(x) ~ q(z|x)
L ~ ~ ™ 4
Encoder Decoder

Figure 1: Left: A figure describing the VQ-VAE. Right: Visualisation of the embedding space. The
output of the encoder z(x) is mapped to the nearest point e5. The gradient V. L (in red) will push the
encoder to change its output, which could alter the configuration in the next forward pass.

Agenda

Introduction

Background: Language Modeling

Audio Tokenization

Application: ASR, TTS, S2S Tasks

Application: Sound & Music Generation

Application: Full-Duplex Dialogue Agents

Discussion

Audio Language Modeling

Now that we can tokenize audio

into a discrete “vocabulary”: "|||"||||l' Audio
Continuation
t
Audio Codec Decoder
Proceed exactly as we do with |

(\
T, I, SR S SN, T, S SR
Neural Codec Language Modeling

text language modeling!

Yes, the concept is that simple. : : :
Audio Codec Encoder
e Acoustic
Prompt

Audio Language Modeling

Yes, the concept is that simple...

Continuation
... but there arise some practical t

hallenges:
chaflenges Audio Codec Decoder
1. Increased sequence length .

(\
T, I, SR S SN, T, S SR
Neural Codec Language Modeling

B
T
Audio Codec Encoder
e Acoustic
Prompt

AUle Language I\/lnrlg“nn'

Yes, the concept is that simple...

.||I||.|||||. Audio)
Continuation

Audio Codec Decoder
... but there arise some practical (A \
challenges: .
8 4-level Residual
1. Increased sequence length Vector
2. Dealing with the multi-level RvQ Quantizer
[l Predict multiple tokens per timestep? 4 4 i 4 4 o 4 4 4
* Non-standard impl tation i tibl .
with LLM ecosystem | on NEOMPAEIE Neural Codec Language Modeling
* Poor compatibility with existing samplin
methods*p Y & Ping t i 1
* Lose causal bias between levels f f f
[0 Flatten the codebook and stretch each timestep z
into N (e.g., 4 for a 4-level RVQ)? Audio Codec Encoder
* Exacerbates issue #1 I
* Slower inference
* Slower to train E Acoustic
¢ Requires more GPU memory Prompt

Audio Language Modeling

Yes, the concept is that simple...

... but there arise some practical
challenges:

1. Increased sequence length

2. Dealing with the multi-level RvQ

These methods are formalized into
common “codebook interleaving
patterns” (Copet et al., 2023)

All of these patterns can be used
successfully with varying results. The
“Delay” pattern is popular in very recent
work (MusicGen, VoiceCraft, Parler-TTS).

Flattening Pattern Parallel Pattern

g 2 ;

00D BoDeEDDD By NN E | |

00 DoDNDEDD Dy oo e |

(R0 DooBooBD DDy eoo | 8| |

Rl _DOONDonE DODESER OoDc e |

St S2 S3 5S4 S5 S¢ S7 S S S4n3 San-2 Sdn-1 San St B B3 S 5 S A, St veSn
Sequence steps Sequence steps
Coarse First Pattern Delay Pattern

© “

HODDOBEDD DoE | EESEEannn s

) VD

T o LIEIE-EE EECC I § o Cl -

3 e LR EEC- 3 e CEE - S

= = = [

§ o EEELMEEEELEE 5« EEE RS- .

St 52 53 S Spa Sa Sptt Sn#2 So3 S Sanel San B % % B4 85 % S Sl
Sequence steps Sequence steps

Figure 1: Codebook interleaving patterns presented in Section 2.2. Each time step £, t2, ..., %, is
composed of 4 quantized values (corresponding to k1, . . ., k4). When doing autoregressive modelling,
we can flatten or interleave them in various ways, resulting in a new sequence with 4 parallel streams
and steps s1, Sa, . .., S;,u. The total number of sequence steps S depends on the pattern and original

number of steps 7. 0 is a special token indicating empty positions in the pattern.

Audio Language Modeling

Early examples of Audio Language Models... (2021 — early 2023)

Unit = “Codeword”
S2u = “Speech-to-Unit”
uLM = “Unit Language Model”

Audio Language Modeling vs-runitospeect

Proposed by Lakhotia et al. (2021) in : .
“On Generative Spoken Language g . | Pretrained

] . . LM
Modeling from Raw Audio” (TACL) . Spoken
SO SRR o o e W i e o . Language Speech o
: : ~ — _ 5 Modeling g2 : Generation !
| ~ d iscrete :
Acoustic Unit Discovery System | - /\ :
| : [Quantizer || Resynthesis 5
: '(9'9" K-i:neans on MFCC), : E 5 Encoder Decoder ; Pretrained
' ‘ v ; ‘ v |] (S2u) (u2S) ; ASR
E) B B B0 B B O ;
/HUBERT B | // Discovery ;
x, | [Msk] [msk] [mskl | x, % || ! / .
INE / Model architecture il
| T - and tasks ol
~] 7
'-"Wmm*"’”““ _ -y Figure 1: Setup of the baseline model architecture,

tasks and metrics.

https://arxiv.org/abs/2102.01192

Unit = “Codeword”
S2u = “Speech-to-Unit”
uLM = “Unit Language Model”

Audio Language Modeling vs-runitospeect

Proposed by Lakhotia et al. (2021) in """""""" //
“On Generative Spoken Language e i Priraid
Modeling from Raw Audio” (TACL) _ ="} spoken
- Language | .;p eecht. f
' : eneration |
Modeling [/ AM
Standard decoder-only LLM (e.g. Lgl'%l i e . [Premainea
GPT-3, etc.) / (S2u) (u2s) ASR
// f Acoustic Unit ‘
Layers: 12 / Discovery . §
Attn Heads: 16)/ A—- G-ooap-
d_model: 1024 // """"""""""""""""""""""""""""""""""""
d ffn: 4096 / Model architecture p—
Context size: 3072 // sndtass
/
/ Figure 1: Setup of the baseline model architecture,

tasks and metrics.

https://arxiv.org/abs/2102.01192

Unit = “Codeword”
S2u = “Speech-to-Unit”
uLM = “Unit Language Model”

Audio Language Modeling vs-runitospeect

Proposed by Lakhotia et al. (2021) in ' .
“On Generative Spoken Language g . | Pretrained

. . LM
Modeling from Raw Audio” (TACL) fr—
— Language Speech oo
Mel Spectrogram v;:‘::;?;? B — -Mo\de@g Discrete Generation '
Modified sgomt,ha)t,e, -19—»5,, | Quantizer | Resynthesis ! ed
Tacotron2 5 — 1 = E“(;;;’)" D::;s?' . TR
(Shen et aI., 2018) WaveGlow A . 't//
T S Vocoder (Prenger Dc-:oustlc Upi
ayer ' ISCOVBf?
[Pre-Net H Layers Linear o et al" 2019)
Projection]_’ 9p oxen
7z
Codewords! Location Pt
ensitive [«
Attention 7 Model architecture RO —
hotit Character 3 Conv I | Bidirectional] Ve - and tasks
P Embeddin Layers LSTM P 7
/ - - .
Fig. 1. Block diagram of the Tacotron 2 system architecture. R F gure 1 Setup of the baseline model archltecture,

tasks and metrics.

https://arxiv.org/abs/2102.01192

Audio Language Modeling

Let’s listen - https://speechbot.github.io/gslm/

https://speechbot.github.io/gslm/

Audio Language Modeling

Decoder-only
Autoregressive Generation

AudioLM (Borsos et al., 2022)

‘-
AudiolLM
D ,:> oo [(semantic) ee® e
\) modeling) \ ,
Past semantic tokens Future semantic tokens

Stage 1: Semantic Modeling

Image sources: https://ai.googleblog.com/2022/10/audiolm-language-modeling-approach-to.html

https://arxiv.org/abs/2209.03143
https://ai.googleblog.com/2022/10/audiolm-language-modeling-approach-to.html

Audio Language Modeling

Decoder-only
Autoregressive Generation

AudioLM (Borsos et al., 2022)

-« -
AudiolLM e
D ,:> oo [(semantic [) eee® il
modelin -7
S odeling) S
Past semantic tokens Future semantic tokens s
Generated semantic tokens a” Future coarse acoustic tokens
e 9 b p———A—— AudioLM =
d> 000 "»>0000000000 [> (coarse acoustic [> 000000 OQ®EOO®
" modeling)

Past coarse acoustic tokens

| !

Stage 1: Semantic Modeling
Stage 2: Coarse Acoustic Modeling

Image sources: https://ai.googleblog.com/2022/10/audiolm-language-modeling-approach-to.html

https://arxiv.org/abs/2209.03143
https://ai.googleblog.com/2022/10/audiolm-language-modeling-approach-to.html

Audio Language Modeling

Decoder-only
Autoregressive Generation

AudioLM (Borsos et al., 2022)

—————— /,’
___________ 271
———————— P !
__________ Phe 1
___________ Phe 1
«---"" /’/ !
AudiolLM JPiad)
D £ oo [(semantic [) eee® Pt /
N modelin - /
J g) —— ,¢’ II
Past semantic tokens Future semantic tokens -7)
//’ i
’/’/ *
Generated semantic tokens A~ Generated coarse acoustic tokens Generated fine acoustic tokens
Q o000 —_— AudioLM A AudioLM -
d> ®©0 00 0 —> 00 0000 " 0o 0 [> (coarse acoustic [> e 0000 00 00 0 Ii} (fine acoustic E> ® O @ C
D 0 0 0 ¢ — modeling) modeling)

Past coarse acoustic tokens

|
AudiolLM Model
| T reshape <;:l‘]

O
Stage 1: Semantic Modeling : . oo . 2 QQ
Stage 2: Coarse Acoustic Modeling ‘
Stage 3: Fine Acoustic Modeling

Image sources: https://ai.googleblog.com/2022/10/audiolm-language-modeling-approach-to.html

https://arxiv.org/abs/2209.03143
https://ai.googleblog.com/2022/10/audiolm-language-modeling-approach-to.html

Audio Language Modeling

AudiolLM is a significant step in this direction — textless, audio-only language generation!

AudioLM is a general framework that applies autoregressive language generation principals to
any type of audio:

o Speech, Music, including background recording conditions

‘))) https://google-research.github.io/seanet/audiolm/examples/

https://google-research.github.io/seanet/audiolm/examples/

Audio Language Modeling

Modeling raw speech audio is hard — it requires learning the semantics and pragmatics of
language from audio.

For example:
° Learning what words and sentences mean in context
> Predicting the underlying intent of the speaker
° Remaining coherent beyond a few words at a time

Text LLMs are VERY good at this...

If we condition audio generation on text, the language modeling problem reduces to a much easier
translation problem...

Audio Language Modeling

VALL-E is a Decoder-only Transformer LM that))) :;tpsﬂ// W}’VWI-Im‘Crloscl’rt-‘;om/e”'“/ researc
predicts the discrete codes from a pre-trained neural project/val-e-x/vat-e
audio codec (EnCodec; Defossez et al., 2022) .,|I|,.,|||,, Personalized
Speech
i 5
VALL-E’s prompt contains: VALL-E T o

1. Text Portion [‘ \

1. Phoneme tokens representing TS S Y T S SR S S
~3 seconds of sample speech
from the desired speaker

Neural Codec Language Modeling

= ot SR T

2. Phoneme tokens to be Lo Y 7 %

synthesized :
Phoneme Conversion Audio Codec Encoder
2. Acoustic Portion t |

1. Acoustic tokens (EnCodec codes) Text G Acoustic
for the ~3 seconds of sample Prompt Y Prompt
speech Text for synthesis 3-second enrolled recording

https://arxiv.org/pdf/2301.02111
https://arxiv.org/pdf/2210.13438.pdf
https://www.microsoft.com/en-us/research/project/vall-e-x/vall-e/
https://www.microsoft.com/en-us/research/project/vall-e-x/vall-e/

Agenda

Introduction

Background: Language Modeling

Audio Tokenization

Audio Language Modeling

Application: Sound & Music Generation
Application: Full-Duplex Dialogue Agents

Discussion

Application: ASR, TTS, S2S Tasks

Automatic Speech (B i i
Recogni tion F(, ASR) Multitask training data (680k hours) Sequence-to-sequence learning [EN {'&f{: 0 | Tha kiick bacnany ...
- ey Anqxl-!oken
English transcription prediction
= "
‘ “Ask not what your country can do for ---" ~ .
O Al' Wh . D Ask not what your country can do for - L >
penAal's ISperis a very | (sefstsnion] [saifstention]
2 2 e T ——
well-known state-of-the-art Any-to-English speech translation : g :
ASR model. ‘ “El rapido zorro marrén salta sobre ---" Er"r:nd:frognbi; : 4 N % F p | Transtormer
D The quick brown fox jumps over - (—se sienion] g_ 2 DeondexFacks
This is NOT an audio language . - > g - 1
model but rather a text LM Non-English transcription o o
with cross-attention to a & -0 701 g3t Ueictzer UeL WD e . === M
Sinusoi »
Log-Mel Spectrogram encoder: T otst gio1 g2t teichuet 490 9a we - Eongi%ﬁ;' @—ﬁ? (st)
ing —_— J
No speech 2 ConviD + GELU er—% ;::;nofgl
(n (background music playing) 1 S
. . SOT| EN B g0 The ck
Although not an audio LM, It is B — | [pet{o0 [me s
ve ry p owe rful and e asy tO use ' Log-Mel Spectrogram i Tokens in Multitask Training Format

so worth a mention here!

Application: ASR, TTS, S2S Tasks

Automatic Speech Recognition (ASR) - Ok, back to Audio Language Models.

ASR in an audio LM can be defined as:

The quick brown fox jumped] Text transcription out!
dvert. t t t t + ¢ 4

Text+Neural Codec Language Modeling

Speech codec tokens in...[] : : :
Audio Codec Encoder
e “the quick
! brown fox
jumped
over...”

Application: ASR, TTS, S2S Tasks

Text-To-Speech (TTS)

TTS in an audio LM can be defined as the opposite:

(e.g., we already looked at Vall-E)

.|||||.||I||. Personalized
Speech
t

VALL-E Audio Codec Decoder

|
[|

A S, N Y, N,
Text+ Neural Codec Language Modeling

] Speech codec tokens out!

S r 2 2
Text $ 7 4 £ 4 4
in - D Phoneme Conversion Audio Codec Encoder
Text ‘ Acoustic
Prompt Prompt

Text for synthesis 3-second enrolled recording

Application: ASR, TTS, S2S Tasks

Text-To-Speech (TTS)

TTS models like Vall-E that accept an audio speaker sample along with the text are sometimes
called “Voice Cloning” models.

.|||||.||I||. Personalized
Speech
t

VALL-E Audio Codec Decoder

|
[|

A S, N Y, N,
Text+ Neural Codec Language Modeling

] Speech codec tokens out!

S r 2 2
Text $ 7 4 £ 4 4
in - D Phoneme Conversion Audio Codec Encoder
Text ‘ Acoustic
Prompt Prompt

Text for synthesis 3-second enrolled recording

Application: ASR, TTS, S2S Tasks

Speech-to-Speech (S2S5)

S2S in an audio LM can be defined as:

1
Audio Codec Decoder

A
[|

t + + 3+ % % % % % LlSpeechcodectokens out!
Neural Codec Language Modeling

I

S
Audio Codec Encoder

Speech codec tokens in...[]

Application: ASR, TTS, S2S Tasks

Speech-to-Speech (S2S5)

Multimodal S2S models can interleave audio and text (or audio semantic tokens) to do the core
NLP processing in the text domain before translating back to audio:

1
Audio Codec Decoder
1
[\
I
® 5 & s 838800080 *DSpeechcodectokensout.
Neural Codec Lar +Text+ juage Modeling

A4
Speechcodectokensin...D: : : ® & @

T -

Application: ASR, TTS, S2S Tasks

Speech-to-Speech (S2S5)

Common S2S tasks include Chat, Q&A, Machine Translation, and Voice Style Transfer.

1
Audio Codec Decoder
1
[\
I
® 5 & s 838800080 *DSpeechcodectokensout.
Neural Codec Lar +Text+ juage Modeling

A4
Speechcodectokensin...D: : : ® & @

T -

Application: ASR, TTS, S2S Tasks

Recent examples of Multi-task Audio LMs for ASR, TTS, and S2S
(2023-2024)

Application

. ASR, TTS, S2S Tasks

ViolLA: Unified Codec
Language Models for
Speech Recognition,
Synthesis, and Translation

(Wang et al., 2023)
Microsoft

Details:

o Architecture: Transformer
decoder + LSTM

o Codec: EnCodec

o RVQ Handling: Flatten
pattern (8 codebooks)

o Demo: Unavailable

Target Speech lIIIII-IIIIIl
t

VIO LA Audio Codec Decoder
(Source semantic tokens) (Target semantic tokens) (A
N ~ N E . % Q E n K N\ q E
A A SO I ST S A ;S S S
\ \ 1
Multi-Task Codec Language Modeling b
t Y Y Y 1 1 1 1 i \
4 4 4 6 \‘f \“' \‘§ 6 \‘f \‘Q \‘Q é ‘1* \{’ \‘Q “Q
Language (So;rce RCATe e ASR MT TTS (Target acoustic tokens)
ID Task ID Task ID Task ID
Audio Codec Encoder

t

Source Speech E%

Figure 1: The overall framework of VIOLA, which regards various speech processing tasks as a conditional codec
language model task. The model training is conducted on a multi-task learning framework with ASR, MT, and TTS
tasks, and the model is capable of performing speech-to-text recognition and translation, text-to-text translation,
text-to-speech synthesis, and speech-to-speech translation tasks.

Application: ASR, TTS, S2S Tasks

LauraGPT: Listen, Attend,
Understand, and Regenerate Y A9

AUdio With GPT LauraGPT I Codec Vocoder
1 Audio
| Softmax layer I 1
(Wang et al., 2023) - H ; p ._1._.._: Tl R o
Alibaba Q Q Q t 1] T T f T :T_: :f: DenseEtflbedding
Details: | I l l Transformer
o Architecture: Transformer [:] E'] $ [rJ E] q [i I
decoder f ‘ e g Text/Agdio Codec Token
> Codec: FunCodec + Vocoder Embeddmg Au lo:ncoder Conditions
o RVQ Handling: N/A — only Text Audio
one codebook used
> Demo: Figure 1: An overview of the proposed LauraGPT model. The right part provides an enlarged view

https://lauragpt.github.io/ of the Codec Vocoder in LauraGPT. We omit the text tokenizer for simplicity.

https://lauragpt.github.io/

Application: ASR, TTS, S2S Tasks

SpiRit-LM: Interleaved Spoken - B. ¢.

and Written Language Model i 7 text Totens [[v]r, [HIHIH]V][F,

(Nguyen et al., 2024) Sheech/ IDDDDmDDDDDDDDDDIDDDGDD R R
OoOTOooDD B o

Meta, Inria Paris, EHESS, ENS-PSL, Liama 2 E -

CNRS Paris 63 o i) =

= szzm}" H H‘ et PP g

. . . » h
Deta|| S: "||||||||| Vi Eat your raisins outdoors onthe porch E0 80m. [F]
o Architecture: Transformer decoder Style 1000ms

@) ° -
gggﬁ’;zeH ru El?flfg AI::“ ngf(;'dlérmeans Figure 1: a. The SPIRIT-LM architecture. A language model trained with next token prediction;
’ tokens are derived from speech or text with an encoder, and rendered back in their original modality
o RVQ Handling :N / A —no RVQ with a decoder. SPIRIT-LM models are trained on a mix of text-only sequences, speech-only sequences,
> Demo: and interleaved speech-text sequences. b. Speech-text interleaving scheme. Speech is encoded into
; tokens (pink) using clusterized speech units (Hubert, Pitch, or Style tokens), and text (blue) using BPE.
https://speechbot.github.io/spiritl We use special tokens [TEXT] to prefix text and [SPEECH] for speech tokens. During training, a change
m[of modality is randomly triggered at word boundaries in aligned speech-text corpora. Speech tokens are
deduplicated and interleaved with text tokens at the modality change boundary. c¢. Expressive Speech
tokens. For SPIRIT-LM-EXPRESSIVE, pitch tokens and style tokens are interleaved after deduplication.

l
‘

https://speechbot.github.io/spiritlm/
https://speechbot.github.io/spiritlm/

Application: ASR, TTS, S2S Tasks

VoiceCraft: Zero-Shot Speech “I found the amazing VoiceCraft model” |

Editing and Text-to-Speech in !
the Wild Edited speech: W | Edited: 48%

A I
(Peng et al., 2024) [
 Human Preference
University of Texas at Austin, ’y s : On Naturalness
Rembrand I found the amazing | Original: 52%
Details: VoiceCraft model . ’] | - BRaled
etalls: (Target) “I found this um incredible model”
o Architecture: Transformer (Original) |
decoder

o Codec: EnCodec

: Figure 1: Speech editing with VOICECRAFT. Human
o RVQ Handling: Delay pattern

(4 codebooks listeners prefer VOICECRAFT edited speech over the
o Eemo/:/. b io/Vol original real recording 48% of the time in side-by-side
Cét(ﬁ%'ft '353@ /ppv'g't SO naturalness comparison (details in §5.3)

https://jasonppy.github.io/VoiceCraft_web/
https://jasonppy.github.io/VoiceCraft_web/

Application: ASR, TTS, S2S Tasks

Natural language guidance of
high-fidelity text-to-speech with
synthetlc Decoder-only Transformer

(Lyth & King, 2024) ;‘"'"""";;;;i;q;.';;;;;;;,;;;g;;;;;;;e';; """"""
Stability ﬁl University of e : ' .=-n
Edinburgh, UK - .. - oo B s __, SR
Details: ’ t:):f tgs::s § un e

o Architecture: Transformer decoder S "

with cross-attention to T5 text
encodings

o Codec: DAC (Kumar et al., 2024)
o RVQ Handling: Delay pattern

(9 codebooks T
Figure 1: Overview of the model architecture
°c Demo:
https://www.text-description-to-sp . .
eech.com/ Vocal properties are controllable via a
o Open-source reproduction: separate speaker description prompt

“Parler-TTS” by Hugﬁ]lngFace
ttps://github.com/huggingface/pa
rler-tts

>

https://www.text-description-to-speech.com/
https://www.text-description-to-speech.com/
https://github.com/huggingface/parler-tts
https://github.com/huggingface/parler-tts

Application: ASR, TTS, S2S Tasks

Additional Resources:

Other recent ASR / TTS / S2S work from Meta, some of which uses Codecs:

https://ai.meta.com/blog/multilingual-model-speech-recognition/

https://ai.meta.com/blog/seamless-m4t/

https://ai.meta.com/blog/seamless-communication/

An EnCodec-based TTS audio LM from Suno Al;

https://github.com/suno-ai/bark

https://ai.meta.com/blog/multilingual-model-speech-recognition/
https://ai.meta.com/blog/seamless-m4t/
https://ai.meta.com/blog/seamless-communication/
https://github.com/suno-ai/bark

Agenda

Introduction

Background: Language Modeling

Audio Tokenization

Audio Language Modeling

Application: ASR, TTS, S2S Tasks

Application: Full-Duplex Dialogue Agents

Discussion

Application: Sound & Music Generation

Text-Guided Audio Generation

Unlike TTS & S2S, the text prompt does not serve as a translation target but as loose guidance.
This is akin to text-guided image generation with Stable Diffusion, Midjourney, etc.

1
Audio Codec Decoder

A
[|

S S S S S S S

[0 Audio codec tokens out!

Text+ Neural Codec Language Modeling * Music
Ao
Text guidance in...[] a &8 @ : : : * Sound effects
7 . Audio Codec Encoder
Relaxing sound of I
waves crashing f, Acoussc
against the shore...” Prompt

(Optional) Acoustic style prompt

Application: Sound & Music Generation

AudioGen: Textually Guided Audio
Generation

(Kreuk et al., 2023)
Meta Al, Hebrew University of Jerusalem

Details:

o Architecture: Transformer decoder with
cross-attention to T5 text encodings

o Codec: Custom RVQ-based

o RVQ Handling: Parallel pattern (4
codebooks)

o Demos:
https://felixkreuk.github.io/audiogen/

o https://audiocraft.metademolab.com/au
iogen.htm

o Meta Resources:
https://audiocraft.metademolab.com/

Transformer Decoder

< e

Audio
Decoder
Audio

(enn...n Tokens

Cross~-Attention

Embedded text

}xK
Causal .
Self-Attention

| Embedded audio

Text Positional

‘ Audio Positicnal

Text
Encoder

A dog is barking in
the park

ERCYELT Elssenif) Budie

Tokens
Audio
Encoder

"

|

Lc La lily

T A

\ 4

h

L

Figure 1: A general overview of the AUDIOGENsystem. Left: the audio representation model.
Right: the audio language model. Both text and audio embeddings are concatenated over the time
dimension and fed in K causal self-attention and cross-attention blocks with the embedded text.

https://felixkreuk.github.io/audiogen/
https://audiocraft.metademolab.com/audiogen.html
https://audiocraft.metademolab.com/audiogen.html
https://audiocraft.metademolab.com/

Application: Sound & Music Generation

Simple and Controllable Music
Generation

Flattening Pattern

Parallel Pattern

P« EEEEEEECEEEE < BEEEEEECEE
(Copet et al., 2023) a0l DODNOEDD DRy Oons s | |
3 e B ICIRIEIE -] 5« EE A
Meta Al] Donsooos OoolEt Een-CE [
Details: 51 S 53 Sy S; S¢ S7 53 S.. S4n.3 S4n-2 S4n-1 S4n 51 % 53 5 S5 S¢ S Spaq Sy
. equence steps Sequence steps
o Architecture: Transformer decoder

o Codec: EnCodec " Coarse First Pattern ; Delay Pattern
> RVQ Handling: Delay pattern : J0BDERR BAE | EEeannn BnEmcs
(4 codebooks% 3o CEE-EIEMEE- NS 3« ClEE - S
> Demos: 3 LLE-EEEERLHE s - RIEEEREL E
https://ai.honu.io/papers/musicgen/ E o OAA | BEREnn § o I EEL- |

https://audiocraft.metademolab.com

St S3 S3 S Spqg Sp Sp+l Spa2 Sps3 S Son.l Sin

51 8 83 S5 %% S¢ S Sy %

/musicgen.html Sequence steps Sequence steps
° Meta Resources: Figure 1: Codebook interleaving patterns presented in Section 2.2. Each time step £, t2, ..., %, is
https://audiocraft.metademolab.com/ composed of 4 quantized values (corresponding to k1, . . ., k4). When doing autoregressive modelling,
we can flatten or interleave them in various ways, resulting in a new sequence with 4 parallel streams
and steps s1, Sa, . .., S;,u. The total number of sequence steps S depends on the pattern and original

number of steps 7. 0 is a special token indicating empty positions in the pattern.

https://ai.honu.io/papers/musicgen/
https://audiocraft.metademolab.com/musicgen.html
https://audiocraft.metademolab.com/musicgen.html
https://audiocraft.metademolab.com/

Application: Sound & Music Generation

Additional Resources:

Suno Al’s “Chirp” product provides an end-to-end music generation capability including:

° Lyric generation
° Music generation
> Vocal generation adhering to the lyrics (a type of styled TTS)

o Putting it all together

No paper is released, but if they use a similar architecture to Suno Bark, it might be an EnCodec-based
Audio LM.

https://suno.com/

Agenda

Introduction

Background: Language Modeling

Audio Tokenization
Audio Language Modeling

Application: ASR, TTS, S2S Tasks

Application: Sound & Music Generation

Discussion

Application: Full-Duplex Dialogue
Agents

LLM chatbots are usually text-based. However, speech communication is richer than text:
> Vocal inflections

> Non-linguistic acts (e.g., laughter, backchannels - “mhmm?”, fillers — “umm”
> Non-verbal cues (e.g., hand gestures, head nods, eye contact)

° Timing (e.g., pauses, gaps, overlaps)

° Prosody (e.g., pitch, rate, intensity)

&=laughs it was so
| good, you know? ./

It had (0.4) uhh (1.1) it
had strawberry icing...

[0 CHAT-CA annotations
(MacWhinney, 2019)

https://talkbank.org/manuals/CHAT.html

Application: Full-Duplex Dialogue
Agents

[0 You can stick a text LLM in one of these things.

Application: Full-Duplex Dialogue
Agents

This would be an ASR->LLM->TTS system, a.k.a a cascaded model:

These models fail to produce
fluid, lifelike interaction!

Automatic Speech Why?
) Recognition (ASR) e Rigid, half-duplex turn-taking

* No modeling of prosodic &
LLM Chatbot paralinguistic features
(e.g., ChatGPT)

Text-to-Speech (TTS)

Application: Full-Duplex Dialogue
Agents

Natural human conversations contain:; " (Tensitionrelevance place)

o Positive & Negative ﬂoor tra nsfer Ove‘rla;/ IP‘U ‘ IP‘U Pause IPU (Inter- pausal unit)
offsets (gaps + overlaps) |

° Filled Pauses (umm, you know...) - e e ﬂh—%w««b—w«

o BaCkChanne|S (mhm' I’Ight, yeah) volcano right okay you go down thfft side the volcano

eft-hand of extinct

o Prosodic clues toward intention & — M~ .
emotion

year_I just the of‘ okay
o Intensity, speed, word emphasis, tone, drawn ks & g & Skantze, 2021: Turn-taking in conversational
out syllables, etc. T systems and human-robot interaction: a review.

Gap Backchannel
° Paralinguistic speech

o Laughter, sighing, grunting, squealing,
humming, singing, etc.

o Choral speech (speaking in chorus) Cascaded SDS do none of
° Turn-taking & turn-yielding cues these well (if at all!)

o Rising / falling pitch

o Pause length

Turn

o Semantic cues

Application: Full-Duplex Dialogue
Agents

m n n n n n
NN RN

w o o on
B oRN R

52:

wn
[y

G EEEEME R
e 1zlls = ~ IESIIEE

n

N

t
3
-

ering

nm o n n n wn
N N R PN

n n n wn
N BN

(o]]|]| = — — || =
al|&||@f|]| =]D]] e = TAIES
0
N

wn
ey

: &=laughs b

: he was supposed to press one righ- did he say to press one? P
: no p

: ch (.) okay I guess we're okay P

: [uhm | »

: |mm hmm hmm] B

: alright so um okay it'll complain later when we t hang up P

: ah ckay P

: [okay, so what's up] 2 P

: |hhh hhh| P

: not much, um I, I'm tell you about the (.) abcut keep on changing &

that's okay P

: uhh (.) I have I dunno, I'm kind of out there right now and I'm won

me so I [wanted to] discuss it now [um] P

: |okay] |let's talk] P
: I don't know you uh you wanted to talk as as you you asked to talk

: [so I dig-] P

: lyeah] I uh (.) haven't been in the mood to write P

: [®huh®]2 P

: |&=clears throat]| P

: I've uh I've been really busy and haven't written and then [I uh] P
: |oh that's okay| P

: [I didn't didn't haven't really] P

: |How well how is everything okay| [ox] P

: |haven't really| been in the mood toc write P

: ch ckay P

Cascaded, half-duplex SDS do
none of these well (if at all!)

Imagine speaking to Amazon
Alexa or Google Assistant.

To illustrate, let’s compare ChatGPT’s voice chat to real
human phone calls:
https://www.youtube.com/watch?v=RcgV2u9Kxh0

https://sla.talkbank.org/TBB/ca/CallFriend/eng-n/6062.cha
https://sla.talkbank.org/TBB/ca/CallFriend/eng-n/4708.cha

https://www.youtube.com/watch?v=RcgV2u9Kxh0
https://sla.talkbank.org/TBB/ca/CallFriend/eng-n/6062.cha
https://sla.talkbank.org/TBB/ca/CallFriend/eng-n/4708.cha

[] [] []
° s .
Application: Full-Duplex Dig",
g g g -
Even if cascaded models could model all of those 55
phenomena, they still suffer from two inescapable issues: .
1. Cascading errors: 3 AT
600ms : : : : : ,
-2000 -1000 0 1000 2000 3000
What'S AutomatIC SpeeCh Floor Transfer Offset (ms)
gOing on?) Recognition (ASR) FIGURE 2 | Histogram of floor transfer offsets (FTOs) in the
2 00 ms Switchboard Corpus (Godfrey et al., 1992; Calhoun et al., 2010, see
Section 5.2.1 for details). Each bin has a size of 100 ms.

LLM Chatbot (Levinson & Torreira, 2015)
2. High latency: Watch 200ms

going on?

Text-to-Speech (TTS)
Is that a

show?

Application: Full-Duplex Dialogue
Agents

One early attempt to create a full-duplex dialogue system with continuous turn-taking and pause
prediction: Google Duplex (Leviathan & Matias, 2018)

"’"|"|||"'||i'|“| " O & Demo (@ google I/0 2018):
Yool) il https://www.youtube.com/watc
45K “Okay, for ' /K/ =} ror 7P, | II”'I"M“" h?v=D5VN56i{QMWM&t=40s

what time?” g 0 W please

Source: https://ai.googleblog.com/2018/05/duplex-ai-system-for-natural-conversation.html

https://ai.googleblog.com/2018/05/duplex-ai-system-for-natural-conversation.html
https://www.youtube.com/watch?v=D5VN56jQMWM&t=40s
https://www.youtube.com/watch?v=D5VN56jQMWM&t=40s

Application: Full-Duplex Dialogue
Agents

Google Duplex was impressive, but no paper was released. As a 2018 work, it was likely very specialized and
domain-restricted (i.e. could not handle general conversation)

So, why not use a S2S audio language model to achieve a generalized full-duplex experience?

O Thisis what dGSLM does!

) -
https://speechbot.github.io
/dgsim/

Unlike the other S2S a(uﬁproaches we looked at, dGSLM does not use intermediate text or semantic tokens and
cannot reduce the audio language modeling problem to modal translation!

The lack of semantic conditioning makes this a much harder problem.

https://speechbot.github.io/dgslm/
https://speechbot.github.io/dgslm/

Application: Full-Duplex Dialogue
Agents

dGSLM (or just “DLM”) is GSLM for Dialogue: Hoobgtest— ot fpore
§ 2

HifiGAN instead of
Decoder ‘
(HIIGAN) Tacotron2+WaveGlow

7 A
e

. Similar to AudioGen!
Dual-tower LLM | [DM
])
EEEE S HuBERT encoder
Q&Quantizerf / K-means quantizer
Two concurrent channels S (codewords)

(one per speaker) NE:)‘%

e e o e

Figure 1: General Schema for dGSLM: A discrete en-
coder (HuBERT+kmeans) turns each channel of a dia-
logue into a string of discrete units (c1,..cy). A Dia-
logue Language Model (DLM) is trained to autoregres-
sively produce units that are turned into waveforms us-
ing a decoder (HifiGAN).

https://arxiv.org/pdf/2203.16502

Application: Full-Duplex Dialogue
Agents

Duration 2 Pred.

Lingar-Unit) |Lmeo.r-bumtovﬂ
7

d e N e o e N e g e Ry e
Duglicated [., | [\ | | ‘ b] -] J ‘ J
/ / Units Generation LC‘IJI £ ‘ CSJ J CSJl’ C:l) l CQJ ‘\qu LCS_ |\ CT?

shared
e S e Sy C e e e e e
: st : : : Add & Neves
A I N N 0O
belayed I
] Training | Dewfon {13 (13 03 a2 &L ha i 1 1 Feed
Prediction oo i et ? e == c
| 1 1 | Objectives N 85 § -\\ 5 % .\ Forward A;:it;on
- N\ We —Nid =
P | Edge Unit [(K i \ Transformer
; : cqd|i| ez i ez | | ez il es calt T Add & Noow
| DLM | Prediction | =1) A e L == . | |) ue;?f{ i Layer
| El) A : P) - \ Cross-Attention
zaop P Cross Attertion Transformer Layer x4 |
D.mogug TroansPormer i
Language Modgl i [e Ade & Norw
(DLM) Self Mm Transformer Layer xﬂ]
" \ 8 g) e
\ i Multi-Head
N\ ’ Self-Attention
L e IiliL =
weights ———
N\ Input Units J caJ I ch | ez | (cs\ csl \ e J ca | ca| [ccu csl 2 —0(0—¢
) L — — Positional

—— e e S - S

Input Units 1 Input Units 2

Application: Full-Duplex Dialogue
Agents

o What is next? Can we solve dGSLM’s coherence issue and get something up and running for the
open-source Al community?

o Perhaps just scale it up and train on more data?
o Perhaps align its embedding space with text LLMs that are already very coherent?

> Perhaps use intermediate text / semantic tokens?
° This is the topic of my PhD thesis!

Agenda

Introduction

Background: Language Modeling

Audio Tokenization
Audio Language Modeling
Application: ASR, TTS, S2S Tasks

Application: Sound & Music Generation

Application: Full-Duplex Dialogue Agents

Discussion

Want to get your hands dirty?

Many of the paper, model, and demo links throughout this presentation have open-source
implementations on GitHub.

Many are also on HuggingFace, including:
https://huggingface.co/openai/whisper-large-v3 (ASR)
https://huggingface.co/suno/bark (TTS)
https://huggingface.co/parler-tts/parler_tts_mini_v0.1 (TTS)

https://huggingface.co/facebook/audiogen-medium (Sound effect generation)

https://huggingface.co/facebook/musicgen-large (Music generation)

And many others too!

https://huggingface.co/openai/whisper-large-v3
https://huggingface.co/suno/bark
https://huggingface.co/parler-tts/parler_tts_mini_v0.1
https://huggingface.co/facebook/audiogen-medium
https://huggingface.co/facebook/musicgen-large

Thank You!

