
LLMs for Audio Applications

FOCI GENAI/LLM USERS GROUP EPISODE #6

MAY 1ST, 2024

Agenda
Introduction

Background: Language Modeling

Audio Tokenization

Audio Language Modeling

Application: ASR, TTS, S2S Tasks

Application: Sound & Music Generation

Application: Full-Duplex Dialogue Agents

Discussion

Introduction

 Natural language is first acquired in the audio
modality beginning in infancy.

 Children are typically fluent communicators
years before they read or write their first word
of text.

 Can Large Language Models (LLMs) learn to
model language without text?

◦Can LLMs directly understand and
generate audio?

Introduction
 Audio enables more natural human-computer interaction by interacting through speech. Applications
include:

◦ Digital Assistants (e.g., Alexa)

◦ Accessibility Aids

◦ Customer Service Automation

◦ Transcription & Translation

◦ More engaging chat agents

◦ Smart NPCs for video games & immersive worlds

Immersive SDS for NPC concept:
https://www.youtube.com/watch?v=FzSIJ7d3lt0

https://www.youtube.com/watch?v=FzSIJ7d3lt0

Agenda
Introduction

Background: Language Modeling

Audio Tokenization

Audio Language Modeling

Application: ASR, TTS, S2S Tasks

Application: Sound & Music Generation

Application: Full-Duplex Dialogue Agents

Discussion

Background: Language Modeling
 In text generation, we feed tokens in and
predict the next ones autoregressively.

 (e.g., GPT 2-4, Llama 1-3, Mixtral, etc.)

 Input text is first preprocessed by
tokenization into words or subwords:

Transformer

Token
embedding

Positional
encoding

+
Token

embedding

Positional
encoding

+
Token

embedding

Positional
encoding

+
Token

embedding

Positional
encoding

+

Token
embedding

Positional
encoding

+

Representat.
w/ attention

Representat.
w/ attention

Representat.
w/ attention

Representat.
w/ attention

Representat.
w/ attention

 rem _ip sum _dolor …

Linear + Softmax

… Lo rem _ip sum _dolor

”Lorem ipsum dolor sit amet”

[”Lo”, ”rem”, ”_ip”, ”sum”, ”_dolor”, ”_sit”, ”_a”, ”met”]

[5643, 6568, 332, 2224, 99, 129, 22931, 2321]

Background: Language Modeling
 Input text is first preprocessed by
tokenization into words or subwords:

Transformer

Token
embedding

Positional
encoding

+
Token

embedding

Positional
encoding

+
Token

embedding

Positional
encoding

+
Token

embedding

Positional
encoding

+

Token
embedding

Positional
encoding

+

Representat.
w/ attention

Representat.
w/ attention

Representat.
w/ attention

Representat.
w/ attention

Representat.
w/ attention

rem (6568) … … … …
Linear + Softmax

… Lo (5643) rem (6568) … … …

”Lorem ipsum dolor sit amet”

[”Lo”, ”rem”, ”_ip”, ”sum”, ”_dolor”, ”_sit”, ”_a”, ”met”]

[5643, 6568, 332, 2224, 99, 129, 22931, 2321]

0
1
2
…
...
5643
…
…
~50k

Embedding lookup table

…
…

Agenda
Introduction

Background: Language Modeling

Audio Tokenization

Audio Language Modeling

Application: ASR, TTS, S2S Tasks

Application: Sound & Music Generation

Application: Full-Duplex Dialogue Agents

Discussion

Audio Tokenization
 The immediate question:

 When building an audio language model, what are the tokens?
◦ “Acoustic Tokens” need to represent units of sound rather than units of language.

 For this, we turn to the Audio Codec (e.g., MP3, AAC, FLAC, WAV, etc…):

These can be
our Tokens!

Encoder … 2, 52, 35, 1
…

Decoder

Sampled audio Reconstructed audio

General
Audio
Codec

Discrete digital signal
(highly compressed)

Audio Tokenization
 The immediate question:

 When building an audio language model, what are the tokens?
◦ “Acoustic Tokens” need to represent units of sound rather than units of language.

 For this, we turn to the Audio Codec (e.g., MP3, AAC, FLAC, WAV, etc…):

These can be
our Tokens!

Encoder … 2, 52, 35, 1
…

Decoder

Sampled audio Reconstructed audio

General
Audio
Codec

Discrete digital signal
(highly compressed)

For 44.1 kHz sampling rate:
MP3, AAC: 96-320 Kbps
Neural Audio Codec: 1.5-24
Kbps!!!

Audio Tokenization
 A neural audio codec uses a neural encoder to encode a sequence of continuous vector
representations of the sampled audio over time, usually at a much lower frequency:

◦ E.g., raw audio sampled at 24kHz, vectors produced at 75Hz

◦ But…. this is even more information than the raw audio waveform!

Encoder Decoder

Sampled audio Reconstructed audio

0.1
-0.3
0.4
…

-0.1

0.2
-0.4
0.8
…

-0.9

-0.4
-0.1
-0.6
…
0.5

0.3
-0.5
0.9
…
0.2

-0.3
0.4
-0.4
…

-0.7

…

Encoded feature vectors

t=1 t=2 … … …
t=N

Enter: Vector Quantization!

Audio Tokenization
 Vector Quantization (VQ) quantizes (discretizes)
continuous vectors by mapping each of them to the
centroids of their respective Voronoi regions in the space.

 It’s basically just k-means!*

 *K-means usually refers to Lloyd’s algorithm, but that is just one of many ways to
construct this cluster space. Others include Kohonen’s SOM and VQ-VAE.

Encoder Decoder

Sampled audio Reconstructed audio

0.1
-0.3
0.4
…

-0.1

0.2
-0.4
0.8
…

-0.9

-0.4
-0.1
-0.6
…
0.5

0.3
-0.5
0.9
…
0.2

-0.3
0.4
-0.4
…

-0.7

…

Encoded feature vectors

t=1 t=2 … … …
t=N

Image source: https://wiki.aalto.fi/pages/viewpage.action?pageId=149883153

https://wiki.aalto.fi/pages/viewpage.action?pageId=149883153

Audio Tokenization
 The centroid vectors
in the space are called
Codewords!

 Together they create
an indexable
Codebook!

Encoder Decoder

Sampled audio Reconstructed audio

0.1
-0.3
0.4
…

-0.1

0.2
-0.4
0.8
…

-0.9

-0.4
-0.1
-0.6
…
0.5

0.3
-0.5
0.9
…
0.2

-0.3
0.4
-0.4
…

-0.7

…

Encoded feature vectors

t=1 t=2 … … …
t=N

0
1
2
…
...
9
…
…
14
15

…
…

Embedding lookup table (Codebook)

 i=9 i=13 i=15 … …
…

Image source: https://wiki.aalto.fi/pages/viewpage.action?pageId=149883153

https://wiki.aalto.fi/pages/viewpage.action?pageId=149883153

Audio Tokenization
 The centroid vectors
in the space are called
Codewords!

 Together they create
an indexable
Codebook!

Encoder Decoder

Sampled audio Reconstructed audio

0
1
2
…
...
9
…
…
14
15

…
…

Embedding lookup table (Codebook)

[9, 13, 15, 4, 7, 13, 12, ..., 14, 15]

t=1 t=2 … … … … … … …
t=NSequence of codeword indices!

(discrete & highly compressed)
Image source: https://wiki.aalto.fi/pages/viewpage.action?pageId=149883153

https://wiki.aalto.fi/pages/viewpage.action?pageId=149883153

Audio Tokenization

 The decoder can simply look up
each centroid (codeword)
vector by its index as a good
approximation of the original
input vector that it represents.

Decoder

Reconstructed audio

0
1
2
…
...
9
…
…
14
15

…
…

Embedding lookup table (Codebook)

[9, 13, 15, 4, ..., 15]

 Text NLP Analogies:
◦ Codeword Index:

Token Id!

◦ Codeword:
Token embedding!

◦ Codebook:
Token embedding
matrix! (lookup table)

0.3
-0.6
0.9
…
0.3

-0.3
0.5
-0.4
…

-0.6

Image source: https://wiki.aalto.fi/pages/viewpage.action?pageId=149883153

https://wiki.aalto.fi/pages/viewpage.action?pageId=149883153

Audio Tokenization
 However - the reconstruction will be lossy:

 Enter: Residual Vector Quantization (RVQ):

Reconstructed audio

[... 23, 4, ..., 15]

0.3
-0.6
0.9
…
0.3

-0.3
0.5
-0.4
…

-0.6

Approximations of
original encoding
vectors!

... Decoder

Sampled audio

0.2
-0.5
0.9
…
0.3

-0.2
0.6
-0.4
…

-0.6

...

Map Lookup

Encoder

0.2
-0.5
0.9
…
0.3

0.3
-0.6
0.9
…
0.3

-

Original Appx.

=

-0.1
0.1
0.0
…
0.0

Residual Vector
(reconstruction error)

Audio Tokenization
 However - the reconstruction will be lossy:

 Enter: Residual Vector Quantization (RVQ):

Reconstructed audio

[... 23, 4, ..., 15]

0.3
-0.6
0.9
…
0.3

-0.3
0.5
-0.4
…

-0.6

... Decoder

Sampled audio

0.2
-0.5
0.9
…
0.3

-0.2
0.6
-0.4
…

-0.6

...

Map Lookup

Encoder

-0.1
0.1
0.0
…
0.0

Residual Vectors
(reconstruction errors)

0.1
0.1
0.0
…
0.0

... [... 8, 14, ..., 92]

Map Lookup

Using separate codebook!

-0.2
0.0
0.0
…
0.0

0.0
0.2
-0.1
…
0.0

...

Approximations of
original residual vectors!

+ +

Summed with first level
approximations to “correct”
the reconstruction error!

Audio Tokenization
 However - the reconstruction will be lossy:

 But… won’t the residual approximations have their own reconstruction error?

Reconstructed audio

[... 23, 4, ..., 15]

0.3
-0.6
0.9
…
0.3

-0.3
0.5
-0.4
…

-0.6

... Decoder

Sampled audio

0.2
-0.5
0.9
…
0.3

-0.2
0.6
-0.4
…

-0.6

...

Map Lookup

Encoder

-0.1
0.1
0.0
…
0.0

Residual Vectors
(reconstruction errors)

0.1
0.1
0.0
…
0.0

... [... 8, 14, ..., 92]

Map Lookup

Using separate codebook!

-0.2
0.0
0.0
…
0.0

0.0
0.2
-0.1
…
0.0

...

Approximations of
original residual vectors!

+ +

Summed with first level
approximations to “correct”
the reconstruction error!

No problem!

Audio Tokenization
 However - the reconstruction will be lossy:

Reconstructed audio

[... 23, 4, ..., 15]

0.3
-0.6
0.9
…
0.3

-0.3
0.5
-0.4
…

-0.6

... Decoder

Sampled audio

0.2
-0.5
0.9
…
0.3

-0.2
0.6
-0.4
…

-0.6

...

Map Lookup

Encoder

-0.1
0.1
0.0
…
0.0

Secondary Residual
Vectors

0.1
0.1
0.0
…
0.0

... [... 8, 14, ..., 92]

Map Lookup

Using separate codebook!

-0.2
0.0
0.0
…
0.0

0.0
0.2
-0.1
…
0.0

...

Approximations of
secondary residual vectors!

+ +

-0.1
0.1
0.0
…
0.0

0.1
0.1
0.0
…
0.0

... [... 62, 1, ..., 73]

Map Lookup

Using separate codebook!

-0.2
0.0
0.0
…
0.0

0.0
0.2
-0.1
…
0.0

...

+ +
All levels summed together
to get a better “correction”
of the reconstruction error!

Multi-level RVQ!

Audio Tokenization
 This process can be repeated N times to get progressively better reconstruction:

Reconstructed audio

[... 23, 4, ..., 15]

0.3
-0.6
0.9
…
0.3

-0.3
0.5
-0.4
…

-0.6

... Decoder

Sampled audio

0.2
-0.5
0.9
…
0.3

-0.2
0.6
-0.4
…

-0.6

...

Map Lookup

Encoder

N-th level Residual Vectors Approximations of N-th
level residual vectors!

+ +

-0.1
0.1
0.0
…
0.0

0.1
0.1
0.0
…
0.0

... [... 62, 1, ..., 73]

-0.2
0.0
0.0
…
0.0

0.0
0.2
-0.1
…
0.0

...

+ +

Multi-level RVQ!

[... 8, 14, ..., 92]

[... 40, 2, ..., 19]

[... 67, 14, ..., 3]

...

...

...

...

Using N separate codebooks!

Audio Tokenization
 We now have powerful, general Neural Audio Codecs for discrete representation of audio!

EnCodec (Defossez et al., 2022)

SoundStream (Zeghidour et al., 2021)

FunCodec (Du et al., 2023)

And several others!

https://arxiv.org/pdf/2210.13438
https://arxiv.org/abs/2107.03312
https://arxiv.org/abs/2309.07405

By the way:
 Vector Quantization is not just for audio: it can be used anywhere there is a vector space!

◦ E.g., VQ-VAE (Van Den Oord et al., 2017) uses VQ to construct a discrete image embedding space
◦ Here, the codebook is learned by gradient descent jointly with the rest of the model.

◦ This goes on to be a major component in DALL·E!

Agenda
Introduction

Background: Language Modeling

Audio Tokenization

Audio Language Modeling

Application: ASR, TTS, S2S Tasks

Application: Sound & Music Generation

Application: Full-Duplex Dialogue Agents

Discussion

Audio Language Modeling
 Now that we can tokenize audio
into a discrete “vocabulary”:

 Proceed exactly as we do with
text language modeling!

 Yes, the concept is that simple.

Audio
Continuation

Audio Language Modeling
 Yes, the concept is that simple…

 … but there arise some practical
challenges:
1. Increased sequence length

Audio
Continuation

Audio Language Modeling
 Yes, the concept is that simple…

 … but there arise some practical
challenges:
1. Increased sequence length

2. Dealing with the multi-level RVQ
� Predict multiple tokens per timestep?

• Non-standard implementation incompatible
with LLM ecosystem

• Poor compatibility with existing sampling
methods*

• Lose causal bias between levels

� Flatten the codebook and stretch each timestep
into N (e.g., 4 for a 4-level RVQ)?

• Exacerbates issue #1

• Slower inference

• Slower to train

• Requires more GPU memory

Audio
Continuation

4-level Residual
Vector
Quantizer

Audio Language Modeling
 Yes, the concept is that simple…

 … but there arise some practical
challenges:
1. Increased sequence length

2. Dealing with the multi-level RVQ

These methods are formalized into
common “codebook interleaving
patterns” (Copet et al., 2023)

All of these patterns can be used
successfully with varying results. The
“Delay” pattern is popular in very recent
work (MusicGen, VoiceCraft, Parler-TTS).

Audio Language Modeling

Early examples of Audio Language Models… (2021 – early 2023)

Audio Language Modeling
 Proposed by Lakhotia et al. (2021) in
“On Generative Spoken Language
Modeling from Raw Audio” (TACL)

Unit = “Codeword”
S2u = “Speech-to-Unit”
uLM = “Unit Language Model”
u2S = “Unit-to-Speech”

https://arxiv.org/abs/2102.01192

Audio Language Modeling
 Proposed by Lakhotia et al. (2021) in
“On Generative Spoken Language
Modeling from Raw Audio” (TACL)

Standard decoder-only LLM (e.g.
GPT-3, etc.)

Layers: 12
Attn Heads: 16
d_model: 1024

d_ffn: 4096
Context size: 3072

Unit = “Codeword”
S2u = “Speech-to-Unit”
uLM = “Unit Language Model”
u2S = “Unit-to-Speech”

https://arxiv.org/abs/2102.01192

Audio Language Modeling
 Proposed by Lakhotia et al. (2021) in
“On Generative Spoken Language
Modeling from Raw Audio” (TACL)

Modified
Tacotron2
(Shen et al., 2018)

Codewords!

WaveGlow
Vocoder (Prenger
et al., 2019)

Unit = “Codeword”
S2u = “Speech-to-Unit”
uLM = “Unit Language Model”
u2S = “Unit-to-Speech”

https://arxiv.org/abs/2102.01192

Audio Language Modeling

 Let’s listen - https://speechbot.github.io/gslm/

https://speechbot.github.io/gslm/

Audio Language Modeling

 AudioLM (Borsos et al., 2022)

Image sources: https://ai.googleblog.com/2022/10/audiolm-language-modeling-approach-to.html

Stage 1: Semantic Modeling

Decoder-only
Autoregressive Generation

https://arxiv.org/abs/2209.03143
https://ai.googleblog.com/2022/10/audiolm-language-modeling-approach-to.html

Audio Language Modeling

 AudioLM (Borsos et al., 2022)

Image sources: https://ai.googleblog.com/2022/10/audiolm-language-modeling-approach-to.html

Stage 1: Semantic Modeling
Stage 2: Coarse Acoustic Modeling

Decoder-only
Autoregressive Generation

https://arxiv.org/abs/2209.03143
https://ai.googleblog.com/2022/10/audiolm-language-modeling-approach-to.html

Audio Language Modeling

 AudioLM (Borsos et al., 2022)

Image sources: https://ai.googleblog.com/2022/10/audiolm-language-modeling-approach-to.html

Stage 1: Semantic Modeling
Stage 2: Coarse Acoustic Modeling
Stage 3: Fine Acoustic Modeling

Decoder-only
Autoregressive Generation

https://arxiv.org/abs/2209.03143
https://ai.googleblog.com/2022/10/audiolm-language-modeling-approach-to.html

Audio Language Modeling
 AudioLM is a significant step in this direction – textless, audio-only language generation!

 AudioLM is a general framework that applies autoregressive language generation principals to
any type of audio:

◦ Speech, Music, including background recording conditions

https://google-research.github.io/seanet/audiolm/examples/

https://google-research.github.io/seanet/audiolm/examples/

Audio Language Modeling
 Modeling raw speech audio is hard – it requires learning the semantics and pragmatics of
language from audio.

 For example:
◦ Learning what words and sentences mean in context

◦ Predicting the underlying intent of the speaker

◦ Remaining coherent beyond a few words at a time

Text LLMs are VERY good at this...

If we condition audio generation on text, the language modeling problem reduces to a much easier
translation problem…

Audio Language Modeling

 VALL-E’s prompt contains:

1. Text Portion
1. Phoneme tokens representing

~3 seconds of sample speech
from the desired speaker

2. Phoneme tokens to be
synthesized

2. Acoustic Portion
1. Acoustic tokens (EnCodec codes)

for the ~3 seconds of sample
speech

 VALL-E is a Decoder-only Transformer LM that
predicts the discrete codes from a pre-trained neural
audio codec (EnCodec; Defossez et al., 2022)

https://www.microsoft.com/en-us/researc
h/project/vall-e-x/vall-e/

https://arxiv.org/pdf/2301.02111
https://arxiv.org/pdf/2210.13438.pdf
https://www.microsoft.com/en-us/research/project/vall-e-x/vall-e/
https://www.microsoft.com/en-us/research/project/vall-e-x/vall-e/

Agenda
Introduction

Background: Language Modeling

Audio Tokenization

Audio Language Modeling

Application: ASR, TTS, S2S Tasks

Application: Sound & Music Generation

Application: Full-Duplex Dialogue Agents

Discussion

Application: ASR, TTS, S2S Tasks
 Automatic Speech
Recognition (ASR)

 OpenAI’s Whisper is a very
well-known state-of-the-art
ASR model.

 This is NOT an audio language
model, but rather a text LM
with cross-attention to a
Log-Mel Spectrogram encoder:

 Although not an audio LM, It is
very powerful and easy to use
so worth a mention here!

Application: ASR, TTS, S2S Tasks
 Automatic Speech Recognition (ASR) - Ok, back to Audio Language Models.

 ASR in an audio LM can be defined as:

The quick brown fox jumped
over…

“the quick
brown fox
jumped
over…”

Speech codec tokens in…🡪

🡪 Text transcription out!

Text+

Application: ASR, TTS, S2S Tasks

Text
in…🡪

🡪 Speech codec tokens out!

Text+

 Text-To-Speech (TTS)

 TTS in an audio LM can be defined as the opposite:

 (e.g., we already looked at Vall-E)

Application: ASR, TTS, S2S Tasks

Text
in…🡪

🡪 Speech codec tokens out!

Text+

 Text-To-Speech (TTS)

 TTS models like Vall-E that accept an audio speaker sample along with the text are sometimes
called “Voice Cloning” models.

Application: ASR, TTS, S2S Tasks

Speech codec tokens in…🡪

🡪 Speech codec tokens out!

 Speech-to-Speech (S2S)

 S2S in an audio LM can be defined as:

Application: ASR, TTS, S2S Tasks

Speech codec tokens in…🡪

 Speech-to-Speech (S2S)

 Multimodal S2S models can interleave audio and text (or audio semantic tokens) to do the core
NLP processing in the text domain before translating back to audio:

🡪 Speech codec tokens out!

Intermediate text
or semantic

tokens

+Text+

Application: ASR, TTS, S2S Tasks

Speech codec tokens in…🡪

 Speech-to-Speech (S2S)

 Common S2S tasks include Chat, Q&A, Machine Translation, and Voice Style Transfer.

🡪 Speech codec tokens out!

+Text+

Intermediate text
or semantic

tokens

Application: ASR, TTS, S2S Tasks

Recent examples of Multi-task Audio LMs for ASR, TTS, and S2S

(2023-2024)

Application: ASR, TTS, S2S Tasks
 VioLA: Unified Codec
Language Models for
Speech Recognition,
Synthesis, and Translation

 (Wang et al., 2023)

 Microsoft

 Details:
◦ Architecture: Transformer

decoder + LSTM

◦ Codec: EnCodec

◦ RVQ Handling: Flatten
pattern (8 codebooks)

◦ Demo: Unavailable

Application: ASR, TTS, S2S Tasks
 LauraGPT: Listen, Attend,
Understand, and Regenerate
Audio with GPT

 (Wang et al., 2023)

 Alibaba

 Details:
◦ Architecture: Transformer

decoder

◦ Codec: FunCodec + Vocoder

◦ RVQ Handling: N/A – only
one codebook used

◦ Demo:
https://lauragpt.github.io/

https://lauragpt.github.io/

Application: ASR, TTS, S2S Tasks
 SpiRit-LM: Interleaved Spoken
and Written Language Model

 (Nguyen et al., 2024)

 Meta, Inria Paris, EHESS, ENS-PSL,
CNRS Paris

 Details:
◦ Architecture: Transformer decoder

◦ Codec: HuBERT Encoder, k-means
quantizer, HifiGAN Decoder

◦ RVQ Handling: N/A – no RVQ

◦ Demo:
https://speechbot.github.io/spiritl
m/

https://speechbot.github.io/spiritlm/
https://speechbot.github.io/spiritlm/

Application: ASR, TTS, S2S Tasks
 VoiceCraft: Zero-Shot Speech
Editing and Text-to-Speech in
the Wild

 (Peng et al., 2024)

 University of Texas at Austin,
Rembrand

 Details:
◦ Architecture: Transformer

decoder
◦ Codec: EnCodec
◦ RVQ Handling: Delay pattern

(4 codebooks)
◦ Demo:

https://jasonppy.github.io/Voi
ceCraft_web/

https://jasonppy.github.io/VoiceCraft_web/
https://jasonppy.github.io/VoiceCraft_web/

Application: ASR, TTS, S2S Tasks
 Natural language guidance of
high-fidelity text-to-speech with
synthetic

 (Lyth & King, 2024)

 Stability AI, University of
Edinburgh, UK

 Details:
◦ Architecture: Transformer decoder

with cross-attention to T5 text
encodings

◦ Codec: DAC (Kumar et al., 2024)
◦ RVQ Handling: Delay pattern

(9 codebooks)
◦ Demo:

https://www.text-description-to-sp
eech.com/

◦ Open-source reproduction:
“Parler-TTS” by HuggingFace:
https://github.com/huggingface/pa
rler-tts

Vocal properties are controllable via a
separate speaker description prompt

https://www.text-description-to-speech.com/
https://www.text-description-to-speech.com/
https://github.com/huggingface/parler-tts
https://github.com/huggingface/parler-tts

Application: ASR, TTS, S2S Tasks
 Additional Resources:

 Other recent ASR / TTS / S2S work from Meta, some of which uses Codecs:

 https://ai.meta.com/blog/multilingual-model-speech-recognition/

 https://ai.meta.com/blog/seamless-m4t/

 https://ai.meta.com/blog/seamless-communication/

 An EnCodec-based TTS audio LM from Suno AI:

 https://github.com/suno-ai/bark

https://ai.meta.com/blog/multilingual-model-speech-recognition/
https://ai.meta.com/blog/seamless-m4t/
https://ai.meta.com/blog/seamless-communication/
https://github.com/suno-ai/bark

Agenda
Introduction

Background: Language Modeling

Audio Tokenization

Audio Language Modeling

Application: ASR, TTS, S2S Tasks

Application: Sound & Music Generation

Application: Full-Duplex Dialogue Agents

Discussion

Application: Sound & Music Generation

Text guidance in…🡪

 Text-Guided Audio Generation

 Unlike TTS & S2S, the text prompt does not serve as a translation target but as loose guidance.
This is akin to text-guided image generation with Stable Diffusion, Midjourney, etc.

� Audio codec tokens out!
• Music
• Sound effects

Text+

Text Guidance
Prompt

(Optional) Acoustic style prompt

“Relaxing sound of
waves crashing
against the shore…”

Application: Sound & Music Generation
 AudioGen: Textually Guided Audio
Generation

 (Kreuk et al., 2023)

 Meta AI, Hebrew University of Jerusalem

 Details:
◦ Architecture: Transformer decoder with

cross-attention to T5 text encodings
◦ Codec: Custom RVQ-based
◦ RVQ Handling: Parallel pattern (4

codebooks)
◦ Demos:

https://felixkreuk.github.io/audiogen/
◦ https://audiocraft.metademolab.com/au

diogen.html
◦ Meta Resources:

https://audiocraft.metademolab.com/

https://felixkreuk.github.io/audiogen/
https://audiocraft.metademolab.com/audiogen.html
https://audiocraft.metademolab.com/audiogen.html
https://audiocraft.metademolab.com/

Application: Sound & Music Generation
 Simple and Controllable Music
Generation

 (Copet et al., 2023)

 Meta AI

 Details:
◦ Architecture: Transformer decoder
◦ Codec: EnCodec
◦ RVQ Handling: Delay pattern

(4 codebooks)
◦ Demos:

https://ai.honu.io/papers/musicgen/
◦ https://audiocraft.metademolab.com

/musicgen.html
◦ Meta Resources:

https://audiocraft.metademolab.com/

https://ai.honu.io/papers/musicgen/
https://audiocraft.metademolab.com/musicgen.html
https://audiocraft.metademolab.com/musicgen.html
https://audiocraft.metademolab.com/

Application: Sound & Music Generation
 Additional Resources:

 Suno AI’s “Chirp” product provides an end-to-end music generation capability including:
◦ Lyric generation

◦ Music generation

◦ Vocal generation adhering to the lyrics (a type of styled TTS)

◦ Putting it all together

No paper is released, but if they use a similar architecture to Suno Bark, it might be an EnCodec-based
Audio LM.

https://suno.com/

Agenda
Introduction

Background: Language Modeling

Audio Tokenization

Audio Language Modeling

Application: ASR, TTS, S2S Tasks

Application: Sound & Music Generation

Application: Full-Duplex Dialogue Agents

Discussion

Application: Full-Duplex Dialogue
Agents
 LLM chatbots are usually text-based. However, speech communication is richer than text:

◦ Vocal inflections

◦ Non-linguistic acts (e.g., laughter, backchannels - “mhmm”, fillers – “umm”)

◦ Non-verbal cues (e.g., hand gestures, head nods, eye contact)

◦ Timing (e.g., pauses, gaps, overlaps)

◦ Prosody (e.g., pitch, rate, intensity)

&=laughs it was so
good, you know? ↗

It had (0.4) uhh (1.1) it
had strawberry icing…

Yeah! (0.2) Mhm
� CHAT-CA annotations
 (MacWhinney, 2019)

https://talkbank.org/manuals/CHAT.html

Application: Full-Duplex Dialogue
Agents

� You can stick a text LLM in one of these things.

Application: Full-Duplex Dialogue
Agents

This would be an ASR->LLM->TTS system, a.k.a a cascaded model:

Automatic Speech
Recognition (ASR)

LLM Chatbot
(e.g., ChatGPT)

Text-to-Speech (TTS)

These models fail to produce
fluid, lifelike interaction!

Why?
• Rigid, half-duplex turn-taking
• No modeling of prosodic &

paralinguistic features

Application: Full-Duplex Dialogue
Agents
 Natural human conversations contain:

◦ Positive & Negative floor transfer
offsets (gaps + overlaps)

◦ Filled Pauses (umm, you know…)
◦ Backchannels (mhm, right, yeah)
◦ Prosodic clues toward intention &

emotion
◦ Intensity, speed, word emphasis, tone, drawn

out syllables, etc.

◦ Paralinguistic speech
◦ Laughter, sighing, grunting, squealing,

humming, singing, etc.

◦ Choral speech (speaking in chorus)
◦ Turn-taking & turn-yielding cues

◦ Rising / falling pitch

◦ Pause length

◦ Semantic cues

Cascaded SDS do none of
these well (if at all!)

Skantze, 2021: Turn-taking in conversational
systems and human-robot interaction: a review.

Application: Full-Duplex Dialogue
Agents

To illustrate, let’s compare ChatGPT’s voice chat to real
human phone calls:
https://www.youtube.com/watch?v=RcgV2u9Kxh0

https://sla.talkbank.org/TBB/ca/CallFriend/eng-n/6062.cha
https://sla.talkbank.org/TBB/ca/CallFriend/eng-n/4708.cha

Cascaded, half-duplex SDS do
none of these well (if at all!)

Imagine speaking to Amazon
Alexa or Google Assistant.

https://www.youtube.com/watch?v=RcgV2u9Kxh0
https://sla.talkbank.org/TBB/ca/CallFriend/eng-n/6062.cha
https://sla.talkbank.org/TBB/ca/CallFriend/eng-n/4708.cha

Application: Full-Duplex Dialogue
Agents
 Even if cascaded models could model all of those
phenomena, they still suffer from two inescapable issues:

 1. Cascading errors:

 2. High latency:

Automatic Speech
Recognition (ASR)

LLM Chatbot

Text-to-Speech (TTS)

What’s
going on?

Watch
going on?

Is that a
show?

600ms

200ms

800ms

(Levinson & Torreira, 2015)

Application: Full-Duplex Dialogue
Agents
 One early attempt to create a full-duplex dialogue system with continuous turn-taking and pause
prediction: Google Duplex (Leviathan & Matias, 2018)

Source: https://ai.googleblog.com/2018/05/duplex-ai-system-for-natural-conversation.html

Demo (@ google I/O 2018):

https://www.youtube.com/watc
h?v=D5VN56jQMWM&t=40s

https://ai.googleblog.com/2018/05/duplex-ai-system-for-natural-conversation.html
https://www.youtube.com/watch?v=D5VN56jQMWM&t=40s
https://www.youtube.com/watch?v=D5VN56jQMWM&t=40s

Application: Full-Duplex Dialogue
Agents
 Google Duplex was impressive, but no paper was released. As a 2018 work, it was likely very specialized and
domain-restricted (i.e. could not handle general conversation)

 So, why not use a S2S audio language model to achieve a generalized full-duplex experience?

 Unlike the other S2S approaches we looked at, dGSLM does not use intermediate text or semantic tokens and
cannot reduce the audio language modeling problem to modal translation!

 The lack of semantic conditioning makes this a much harder problem.

Codec Audio LM

� This is what dGSLM does!
Let’s listen:
https://speechbot.github.io
/dgslm/

https://speechbot.github.io/dgslm/
https://speechbot.github.io/dgslm/

Application: Full-Duplex Dialogue
Agents
 dGSLM (or just “DLM”) is GSLM for Dialogue:

Two concurrent channels
(one per speaker)

Dual-tower LLM

HuBERT encoder
K-means quantizer
(codewords)

HifiGAN instead of
Tacotron2+WaveGlow

Similar to AudioGen!

https://arxiv.org/pdf/2203.16502

Application: Full-Duplex Dialogue
Agents

Application: Full-Duplex Dialogue
Agents

◦ What is next? Can we solve dGSLM’s coherence issue and get something up and running for the
open-source AI community?

◦ Perhaps just scale it up and train on more data?

◦ Perhaps align its embedding space with text LLMs that are already very coherent?

◦ Perhaps use intermediate text / semantic tokens?

◦ This is the topic of my PhD thesis!

Agenda
Introduction

Background: Language Modeling

Audio Tokenization

Audio Language Modeling

Application: ASR, TTS, S2S Tasks

Application: Sound & Music Generation

Application: Full-Duplex Dialogue Agents

Discussion

Discussion
 Want to get your hands dirty?

 Many of the paper, model, and demo links throughout this presentation have open-source
implementations on GitHub.

 Many are also on HuggingFace, including:

 https://huggingface.co/openai/whisper-large-v3 (ASR)

 https://huggingface.co/suno/bark (TTS)

 https://huggingface.co/parler-tts/parler_tts_mini_v0.1 (TTS)

 https://huggingface.co/facebook/audiogen-medium (Sound effect generation)

 https://huggingface.co/facebook/musicgen-large (Music generation)

 And many others too!

https://huggingface.co/openai/whisper-large-v3
https://huggingface.co/suno/bark
https://huggingface.co/parler-tts/parler_tts_mini_v0.1
https://huggingface.co/facebook/audiogen-medium
https://huggingface.co/facebook/musicgen-large

Thank You!

