
COVID Contact-Tracing:
Campus Wifi
 Emily Hu, Freling Smith, Kara Kniss, Ti Dinh, Varun Nair, Yichen Li

The Rensselaer IDEA
Rensselaer Polytechnic Institute

Create Reproducible R Environments with renv!
Wednesday, 02 Apr 2025

RPIrates: The RPI R Users Group
The Rensselaer IDEA
Rensselaer Polytechnic Institute

Tall

These slides were inspired by "Creating and sharing
reproducible environments with renv"

UCSB Carpentry. (2022). Reproducible Publications with Rstudio.

https://carpentries-incubator.github.io/reproducible-publications-quarto/03-collaboration/05-renv/index.html
https://carpentries-incubator.github.io/reproducible-publications-quarto/03-collaboration/05-renv/index.html

The Best of Intentions…
Assume you've followed all the recommended
practices to create reproducible projects:

● You've chosen RStudio/R: free and open-source;
● You've used relative paths, and produced clean

and clear code;
● Your project directory and data files…

○ …follow naming conventions
○ …are well-organized
○ …are beautifully documented

Is that all? Almost, but not quite…

Reality bites!
Imagine investing significant time and effort into
completing a sophisticated data analysis, only to face
the realities of change:

…R gets upgraded!

…new package versions are released!

…everything suddenly comes crashing down!

How can you ensure that the packages you rely on for
your project remain on the same version consistently,
even in the future?

29 Jul 2020

Avoiding Dependency Hell
One common reproducibility issue in research relates to
software dependencies

"Dependency hell"

● A situation in software development where the
complex web of dependencies between different
software components becomes difficult to manage
or resolve

● Occurs when multiple software libraries or
packages have conflicting or incompatible
requirements regarding the versions of other
libraries or packages they rely on

Avoiding Dependency Hell
Let’s say your project uses two R packages: “package X” and “package Y”:

"package X" version 1.0.0 depends on "package Z" version 2.0.0.

"package Y" version 1.5.0 depends on "package Z" version 1.0.0.

● You start your project by installing the latest versions of both packages
○ Everything works fine, and you proceed with your analysis using both packages

● A few months later, you must reproduce your analysis and reinstall the packages
● Unknown to you, “package Z” has been updated since your last installation

○ The new version is incompatible with the older version that “package Y” depends on.
● When you try to run your analysis, you encounter errors or unexpected behavior because “package Y” is no

longer compatible with the updated version of “package Z”

This mismatch in dependencies can result in reproducibility issues, making it challenging to replicate your
previous results

Avoiding Dependency Hell
Before sharing a project, ask yourself:

● What are the versions of the packages used
for my project?

● Will my project be usable on other systems
and/or in the future?

● How do we deal with new projects requiring
different versions of a package?

Enhancing reproducibility with renv
It’s important to maintain a record of package versions used in your analysis and
create a reproducible environment; that’s where the renv package comes in!

● renv enables you to maintain the specific versions of packages your project depends on
○ Ensures stability and compatibility throughout the project lifecycle by "freezing" package

versions
○ Protects your project from unexpected issues or incompatibilities that may arise from

updates
● renv allows you to create isolated project-specific environments

○ Captures specific versions of packages
○ Ensures that the same versions are used every time you reproduce your work

This makes it easy for an unwitting downstream user (maybe you!) to run an R project in the same
environment in which it was originally developed.

Enhancing reproducibility with renv
In sum, there are three main advantages of using renv:

● Isolation: Each project gets its own library of R packages.
○ In this way, you can upgrade and change package versions in one project without

worrying about your other projects.
● Portability: You can more easily share and collaborate on projects while ensuring all

are sharing the same common base
○ by sharing a "lockfile" (renv.lock) which captures the state of your R packages.

● Reproducibility: You can restore your R library exactly as specified in the renv.lock
file.

How does renv work? Packages, libraries & projects
● A package is a collection of

functions, data, and
compiled code

● Libraries are the locations
where packages live

● You may have multiple
projects with different
dependencies…

● …but are calling packages
from the same library

● By default, we have two
libraries, System and User

How does renv work? Life without renv
● The problem: You will be

handling multiple projects in
different points in time and
with unique dependencies

● Every time you start a fresh
project and use
install.packages() you will
grab the latest version of a
given package from CRAN
and re-install, replacing the
package in your
environment

How does renv work? Life with renv
● Renv creates a local project library

for each project, encapsulating
dependencies so you can easily
re-run results for each project
using the original versions of
packages

Using renv: starting a new project
When creating a new project using the
new project wizard, make sure to
select the option
Use renv with this project

Using renv: Enabling renv on an existing project
If you've started a project without renv but
wish to add it:

Enable renv by clicking

Tools>Project Options…>Environments

…and selecting…

Use renv with this project

Using renv: Enabling renv via the R console
Another alternative is to install the renv package, then load it and run the
renv::init() command in the console pane:

Enabling renv creates the initial renv.lock file:

● A JSON file in the project directory
● Records the precise versions of each installed package
● Other metadata such as package sources and checksums

Using renv: Enabling renv
Enabling renv also
creates:

● An .Rprofile file
○ Activates renv for

new R sessions

● An renv folder
containing the files
specified to the right

Using renv: Updating packages
What if you need to update packages for your project?

● Whenever you start using a new package (or otherwise change your
project’s dependencies), run renv::snapshot() to update renv.lock

● If you're using git and start using renv, you will notice that renv creates
several files and directories in addition to renv.lock

● When done, you should commit these files to your project’s git repository

Using renv: Restoring an existing project
● When you open a project for which renv has been set up, renv automatically

runs and checks that the installed package versions match those of the
project.

● If versions match, there is nothing to do
● If there are any mismatches, renv will print a warning resembling the

following:

Using renv: Restoring an existing project
● If this happens, run renv::restore() from the console to download and install

the package versions needed to match the project’s requirements.
● For example, if the project uses tidyverse 1.3.2 and you have an older

version tidyverse 1.3.1 installed, renv will upgrade your RStudio installation
to tidyverse 1.3.2

● Conversely, if the project uses an older version of a package than you have
installed, renv will attempt to download and install the older version for you.

● Don’t worry about losing the newer version; renv ensures that all versions of
all packages remain installed on your computer, available for use by projects
as needed

Summary: How to collaborate using renv
● Initialize renv using renv::init()
● Share project sources (data and code), and include renv.lock, .Rprofile,

and renv/activate.R to ensure that collaborators download and install the
right version of renv when starting the project

● When a collaborator opens the project, renv will automatically bootstrap and
download the appropriate version of renv

● If updates are made, save them with renv::snapshot()
● Collaborators can use renv::restore() to restore the project library on their

machine if needed

renv Caveats
renv is not a panacea for reproducibility; it is a tool that can help make projects
reproducible by helping with one part of the overall problem: R packages. There are a
number of other pieces that renv doesn’t currently provide much help with:

● R version: renv tracks, but doesn’t help with, the version of R used with the project
○ Tools like rig might help; they make it easier to switch between multiple versions of R on one system

● Pandoc: rmarkdown relies heavily on pandoc, but pandoc is not bundled with the rmarkdown package
○ Restoring rmarkdown from the lockfile is insufficient to guarantee exactly the same rendering of

RMarkdown documents
○ The tools provided by the pandoc package might be useful

● Operating system, versions of system libraries, compiler versions: Keeping a ‘stable’ machine image
is a separate challenge, but Docker is one popular solution.

○ See vignette("docker", package = "renv") for recommendations on how Docker can be used
together with renv

renv and R project resources
● Creating and sharing reproducible environments with renv
● Personal R Administration: renv
● R for Data Science (2e): Workflow: scripts and projects (Hadley!)
● Introduction to renv (renv vignette)
● Using RStudio Projects (Posit)
● RStudio User Guide: renv (Posit)

https://bit.ly/3EbLgLt
https://rstats-wtf.github.io/wtf-personal-radmin-slides/#/renv-2
https://r4ds.hadley.nz/workflow-scripts.html
https://rstudio.github.io/renv/articles/renv.html
https://support.posit.co/hc/en-us/articles/200526207-Using-RStudio-Projects
https://docs.posit.co/ide/user/ide/guide/environments/r/renv.html

