Working with Python3 on the IDEA Cluster

Karan Bhanot
bhanotkaran22@gmail.com

September 24, 2020

1 Python

Python is a programming language that is very popular for various applications
such as web scraping, web application development, machine learning, deep
learning and more. The language is backed by a very active community and
houses thousands of libraries and packages.

There are two versions of Python: Python2 and Python3. These two versions
are still being extensively used butofficial support for Python2 was suspended
on January 1, 2020 and only Python3 is now supported now. As a result, many
prominent packages have added support for Python3. This document focuses
on Python3.

2 Python Virtual Environments

Python Virtual Environments provide an isolated environment on a machine
which has Python packages that do not interfere with the packages globally
installed on the machine. A virtual environment can be based on a specific
version of Python, and any number of packages can be installed inside it.

The most commonly used and easily understandable virtual environment
manager is virtualenv but many other tools exist as well such as pew, venv
etc.

3 Python3 on IDEA Server

To access and install packages for Python3 on the IDEA server, you need to
work inside a virtual environment. This ensures that packages installed by a
certain user do not overwrite the packages available at the global level. At the
time of writing this document, the IDEA server has Python 3.6.8 but the process
for set up generally does not change and should work for all future versions of
Python3 as well.

3.1 Set Up Working Directory

The first step is to create a working directory for your Python environment. In
the Linux shell, browse to the location where you want to create the directory
and create the new directory using the command mkdir.

We should
get a
Python2
user to
add com-
ments on
differ-
ences...

— John

We
shouldn’t
use
Python 2
at all most
of the
packages
required
don’t even
support it

— Andrew

Please re-
code shell
commands
using the
mytexttt
com-
mand...

— John

-~

Done —

Karan

O) bhanok@Ip01:~/test_environment &1
[bhanok@1p@l1 ~]$ mkdir test_environment

[bhanok@1p@l ~]$ cd test_environment/

[bhanok@1p@l test_environment]$ I

Figure 1: Creating directory and moving in it

T’ll create the directory test_environment in the main directory and then
use cd test_environment to go inside the newly created directory as seen in
Figure 1.

3.2 Create the Virtual Environment

Once you're inside the virtual environment, the command virtualenv -p python3
. will create the virtual environment for you using wvirtualenv. Figure 2 shows
how the virtual environment is set up.

The command involves the word virtualenv which tells that the machine
that we’re using it as the virtual environment generator. -p python3 tells the
machine that we’re going to use python3 installed on the machine. Finally, the
command ends with a dot which means that the environment must be set up in
the current directory.

3.3 Activate the Virtual Environment

The environment is now completely ready to be used. The command source
bin/activate will activate the environment. The prompt will now be appended
by the name of the environment (test _environment in our case) which shows
that we are now inside the environment.

Anything we install here would not be installed or available outside this envi-
ronment. Figure 3 shows how to activate the environment, update modules and
install a sample package numpy inside the environment. We update pip and se-
tuptools to the latest version using the command pip install --upgrade pip

® bhanok®@Ip01:~/test_environment 881
[bhanok@1p@1 test_environment]$ virtualenv -p python3 .

Running virtualenv with interpreter /usr/bin/python3

Using base prefix '/usr'

New python executable in /home/bhanok/test_environment/bin/python3

Also creating executable in /home/bhanok/test_environment/bin/python

Installing setuptools, pip, wheel...done.

[bhanok@1p@l test_environment]$ I

Figure 2: Creating virtual environment

followed by pip install --upgrade setuptools and then install our sample
package numpy using pip install numpy.

Inside this environment, you can install your necessary packages, play with
them and work on your Python scripts without interfering with anything else.

3.3.1 Using requirements.txt

Once your work is complete and you want others to use it, they would need to
install the packages that you use in your projects as well as ensure compatibility
amongst them. Python provides the option to work with a file called require-
ments.tzt which includes the list of all packages needed by the project along
with their specific versions.

Once you’re inside the virtual environment just use the command pip freeze
> requirements.txt which creates the requirements file with the list of all re-
quired packages. Any user who is using your project can simply run the com-
mand pip install -r requirements.txt and install the required packages
for your project to be replicated easily.

In Figure 4, we can see that we save the list of installed libraries using pip
freeze > requirements.txt which is demonstrated by showing the contents of
the file requirements.tzt using cat requirements.txt. To install the packages
from the list, we used the command pip install -r requirements.txt but as
in this case we already have numpy installed, it just echoed that the requirement
is already satisfied.

maybe dis-

cuss re-
quirements
files? If
we are us-
ing them
that is —

Andrew

I've cre-
ated an-
other sec-
tion for
require-
ments.txt

— Karan

bhanok@Ip01:~/test_environment 881
[bhanok@1p@l test_environment]$ source bin/activate
(test_environment) [bhanok@lp@l test_environment]$ pip install --upgrade pip
Cache entry deserialization failed, entry ignored
Collecting pip
Using cached https://files.pythonhosted.org/packages/54/0c/d@1aa759fdc501a58f431eb5
94a17495f15b88dal42cel4b5845662c13f3/pip-20.0.2-py2.py3-none-any.whl
Installing collected packages: pip
Found existing installation: pip 9.0.1
Uninstalling pip-9.0.1:
Successfully uninstalled pip-9.0.1
Successfully installed pip-20.0.2
(test_environment) [bhanok@lp@l test_environment]$ pip install --upgrade setuptools
Collecting setuptools
Using cached setuptools-46.0.0-py3-none-any.whl (582 kB)
Installing collected packages: setuptools
Attempting uninstall: setuptools
Found existing installation: setuptools 28.8.0
Uninstalling setuptools-28.8.0:
Successfully uninstalled setuptools-28.8.0
Successfully installed setuptools-46.0.0
(test_environment) [bhanok@lp@l test_environment]$ pip install numpy
Collecting numpy
Downloading numpy-1.18.2-cp36-cp36m-manylinux1_x86_64.whl (20.2 MB)
| I | 20.2 MB 177 kB/s
Installing collected packages: numpy
Successfully installed numpy-1.18.2
(test_environment) [bhanok@lp@l test_environment]$ I

Figure 3: Activating virtual environment

bhanok@Ip01:~/test_environment 881
(test_environment) [bhanok@lp@l test_environment]$ pip freeze > requirements.txt
You are using pip version 9.0.1, however version 20.0.2 is available.

You should consider upgrading via the 'pip install --upgrade pip' command.
(test_environment) [bhanok@1p@l test_environment]$ cat requirements.txt

onment) [bhanok@lp@l test_environment]$ pip install -r requirements.t

Requirement already satisfied: numpy==1.18.1 in ./lib/python3.6/site-packages (f
rom -r requ ments.txt (line 1))

You are using pip version 9.0.1, however version 20.0.2 is available.

You should consider upgrading via the 'pip install --upgrade pip' command.
(test_environment) [bhanok@lp@l test_environment]$ I

Figure 4: Working with requirements.txt

bhanok®@Ip01:~/test_environment 881

(test_environment) [bhanok@lp@l test_environment]$ deactivate
[bhanok@1p@l test_environment]$ I

Figure 5: Deactivating virtual environment

3.3.2 Using requirements.txt

Once your work is complete and you want others to use it, they would need to
install the packages that you use in your projects as well as ensure compatibility
amongst them. Python provides the option to work with a file called require-
ments.tet which includes the list of all packages needed by the project along
with their specific versions.

3.4 Deactivate the Virtual Environment

Once you’re done working for the current session, you should deactivate the
environment using deactivate. You will see that the name of the virtual envi-
ronment is now removed indicating that we’re outside the environment as can
be seen in Figure 5.

4 Working with Multiple Projects

If you’re working with multiple Python projects, it’s always a good practice to
have separate virtual environments for each project as each one will have their
own set of required packages and this will prevent interference. For a given
project, each time you want to work on it, just go inside its directory, activate
the environment, complete your task and then deactivate.

5 Future Reading

There are many virtual environment tools that exist for Python. If you want
to read more about them, refer to an article published by me on Medium:
Comparing Python Virtual Environments

https://towardsdatascience.com/comparing-python-virtual-environment-tools-9a6543643a44

	Python
	Python Virtual Environments
	Python3 on IDEA Server
	Set Up Working Directory
	Create the Virtual Environment
	Activate the Virtual Environment
	Using requirements.txt
	Using requirements.txt

	Deactivate the Virtual Environment

	Working with Multiple Projects
	Future Reading

