
Working with Python3 on the IDEA Cluster

Karan Bhanot
bhanotkaran22@gmail.com

February 9, 2021

1 Python

Python is a programming language that is very popular for various applications
such as web scraping, web application development, machine learning, deep
learning and more. The language is backed by a very active community and
houses thousands of libraries and packages.

There are two versions of Python: Python2 and Python3. These two versions
are still being extensively used butofficial support for Python2 was suspended
on January 1, 2020 and only Python3 is now supported now. As a result, many
prominent packages have added support for Python3. This document focuses
on Python3.

2 Python Virtual Environments

Python Virtual Environments provide an isolated environment on a machine
which has Python packages that do not interfere with the packages globally
installed on the machine. A virtual environment can be based on a specific
version of Python, and any number of packages can be installed inside it.

The most commonly used and easily understandable virtual environment
manager is virtualenv but many other tools exist as well such as pew, venv
etc.

3 Python3 on IDEA Server

To access and install packages for Python3 on the IDEA server, you need to
work inside a virtual environment. This ensures that packages installed by a
certain user do not overwrite the packages available at the global level. At the
time of writing this document, the IDEA server has Python 3.6.8 but the process
for set up generally does not change and should work for all future versions of
Python3 as well.

3.1 Set Up Working Directory

The first step is to create a working directory for your Python environment. In
the Linux shell, browse to the location where you want to create the directory
and create the new directory using the command mkdir.

1



Figure 1: Creating directory and moving in it

I’ll create the directory test environment in the main directory and then
use cd test environment to go inside the newly created directory as seen in
Figure 1.

3.2 Create the Virtual Environment

Once you’re inside the virtual environment, the command virtualenv -p python3

. will create the virtual environment for you using virtualenv. Figure 2 shows
how the virtual environment is set up.

The command involves the word virtualenv which tells that the machine
that we’re using it as the virtual environment generator. -p python3 tells the
machine that we’re going to use python3 installed on the machine. Finally, the
command ends with a dot which means that the environment must be set up in
the current directory.

3.3 Activate the Virtual Environment

The environment is now completely ready to be used. The command source

bin/activate will activate the environment. The prompt will now be appended
by the name of the environment (test environment in our case) which shows
that we are now inside the environment.

Anything we install here would not be installed or available outside this envi-
ronment. Figure 3 shows how to activate the environment, update modules and
install a sample package numpy inside the environment. We update pip and se-
tuptools to the latest version using the command pip install --upgrade pip

2



Figure 2: Creating virtual environment

followed by pip install --upgrade setuptools and then install our sample
package numpy using pip install numpy.

Inside this environment, you can install your necessary packages, play with
them and work on your Python scripts without interfering with anything else.

3.3.1 Using requirements.txt

Once your work is complete and you want others to use it, they would need to
install the packages that you use in your projects as well as ensure compatibility
amongst them. Python provides the option to work with a file called require-
ments.txt which includes the list of all packages needed by the project along
with their specific versions.

Once you’re inside the virtual environment just use the command pip freeze

> requirements.txt which creates the requirements file with the list of all re-
quired packages. Any user who is using your project can simply run the com-
mand pip install -r requirements.txt and install the required packages
for your project to be replicated easily.

In Figure 4, we can see that we save the list of installed libraries using pip

freeze > requirements.txt which is demonstrated by showing the contents of
the file requirements.txt using cat requirements.txt. To install the packages
from the list, we used the command pip install -r requirements.txt but as
in this case we already have numpy installed, it just echoed that the requirement
is already satisfied.

3



Figure 3: Activating virtual environment

Figure 4: Working with requirements.txt

4



Figure 5: Deactivating virtual environment

3.3.2 Using requirements.txt

Once your work is complete and you want others to use it, they would need to
install the packages that you use in your projects as well as ensure compatibility
amongst them. Python provides the option to work with a file called require-
ments.txt which includes the list of all packages needed by the project along
with their specific versions.

3.4 Deactivate the Virtual Environment

Once you’re done working for the current session, you should deactivate the
environment using deactivate. You will see that the name of the virtual envi-
ronment is now removed indicating that we’re outside the environment as can
be seen in Figure 5.

4 Working with Jupyter Notebooks

4.1 Accessing Jupyter Notebooks

Jupyter notebooks server is also running on the IDEA Cluster and the user needs
to just directly access it by logging in to their account. Simply, go to the link
https://lp01.idea.rpi.edu/jupyter/hub/login and then login with your
RCS username and password and you’ll get access to your account where you
can create/update/delete Jupyter notebooks.

5

https://lp01.idea.rpi.edu/jupyter/hub/login


Figure 6: Several environments for Jupyter notebooks

NOTE: There are several environments under which the Jupyter notebooks
can be created. Clicking on New dropdown, you’ll be provided with a list of
environments under which you wish you create the Jupyter notebook as seen in
Figure 6.

4.2 Jupyter notebooks in Custom Environments

Not all packages are available under all environments and you may wish to set
up your own environment, under which you can install your own set of packages
and run the Jupyter notebooks. This can be done on the server for both non-
GPU and GPU-enabled Jupyter notebooks.

The steps to run custom environment Jupyter notebooks are:

1. Go to the url https://lp01.idea.rpi.edu/jupyter-gpu/hub/login and
login with your RCS credentials.

2. Click on the New dropdown on the right top corner and select the last
option Terminal. A new tab will open with a terminal connected to the
server.

3. Run the command conda create -p /soft-

ware/anaconda3/envs/ENV NAME where you will replace ENV NAME

with the name of your environment. If we consider the environ-
ment to be custom env, then the command will be conda create -p

/software/anaconda3/envs/custom env

4. The environment is now created. We activate the environment by using
the command conda activate ENV NAME by replacing ENV NAME with the
name of the environment (custom env in this example).

6

https://lp01.idea.rpi.edu/jupyter-gpu/hub/login


5. We need to install nb conda kernels which enables us to show and access
the environment via the Jupyter Hub. Run the command conda install

nb conda kernels.

6. Install any other packages you want in the environment using either pip

or conda.

7. Once the environment is ready, deactivate it using conda deactivate.
Close this terminal window.

8. Again, go to https://lp01.idea.rpi.edu/jupyter-gpu/hub/login and
login if needed (you will probably be logged in by default this time).

9. Click on the New dropdown on the right top corner and select the option
Python [conda env:ENV NAME] where the ENV NAME will be replaced by
the name of your environment (custom env in this example).

10. A Jupyter notebook will open in a new browser tab and this will be based
on the new environment you created.

The environment is set up for all users on the IDEA cluster. You only need
to perform the last three steps (8-10) above every time you want to start a new
notebook.

4.3 Cluster notebooks on Local Machine

If you want to run a Jupyter notebook on the cluster and access it via your
local machine, it’s possible by using port forwarding through SSH. We con-
sider that the user has the RCS name as USERNAME and we are working on the
lp01.idea.rpi.edu node.

The steps to run Jupyter notebooks on local machine are:

1. Open the terminal on your local machine and run the command ssh USER-

NAME@lp01.idea.rpi.edu where you will replace USERNAME with your own
RCS name. It will ask for your password. Type the password (the content
is hidden and you will not see any text while typing your password) and
press ENTER on your keyboard to login.

2. Create a virtual environment as described in the previous sections. Let
us consider that the environment is called custom env. Activate the en-
vironment.

3. Install all the required packages including jupyter inside this environ-
ment. If we just install jupyter, use the command pip install jupyter.

4. Once installed, we need to run the Jupyter server without a browser. Use
the command jupyter notebook --no-browser. You’ll notice that the
server starts up. Select and copy the complete URL that starts with
http://127.0.0.1:8888/?.

5. Open another terminal on your local machine and type the com-
mand ssh -N -f -L localhost:8888:localhost:8888 USER-

NAME@lp01.idea.rpi.edu while replacing USERNAME with your own
RCS name.

7

https://lp01.idea.rpi.edu/jupyter-gpu/hub/login
http://127.0.0.1:8888/?


6. Finally, go to your browser and paste in the URL you copied earlier and
you’ll now be accessing the Jupyter notebooks inside the environment you
created on your local machine.

5 Working with Multiple Projects

If you’re working with multiple Python projects, it’s always a good practice to
have separate virtual environments for each project as each one will have their
own set of required packages and this will prevent interference. For a given
project, each time you want to work on it, just go inside its directory, activate
the environment, complete your task and then deactivate.

6 Future Reading

There are many virtual environment tools that exist for Python. If you want
to read more about them, refer to an article published by me on Medium:
Comparing Python Virtual Environments

NOTE: The document was first created on September 24, 2020 and was
later updated over multiple iterations with last update on February 9, 2021.

8

https://towardsdatascience.com/comparing-python-virtual-environment-tools-9a6543643a44

	Python
	Python Virtual Environments
	Python3 on IDEA Server
	Set Up Working Directory
	Create the Virtual Environment
	Activate the Virtual Environment
	Using requirements.txt
	Using requirements.txt

	Deactivate the Virtual Environment

	Working with Jupyter Notebooks
	Accessing Jupyter Notebooks
	Jupyter notebooks in Custom Environments
	Cluster notebooks on Local Machine

	Working with Multiple Projects
	Future Reading

