In this exploratory study, we scrutinize a database of over 1 million tweets collected across the first five months of 2020 to draw conclusions about public attitudes towards the preventative measure of mask usage during the COVID-19 pandemic. In recent months, a body of literature has emerged to suggest the robustness of trends in online activity as proxies for the epidemiological and sociological impact of COVID-19. We employ natural language processing, clustering and sentiment analysis techniques to organize tweets relating to mask-wearing into high-level themes, then relay narratives for individual clusters through automatic text summarization.
We find that topic clustering and visualization based on mask-related Twitter data offers revealing insights into societal perceptions of COVID-19 and techniques for its prevention. We observe that the volume and polarity of mask related tweets has greatly increased. Importantly, the analysis pipeline presented can be leveraged by the health community for the assessment of public response to health interventions in the ongoing global health crisis.